629 lines
21 KiB
JavaScript
629 lines
21 KiB
JavaScript
/**
|
||
* Bootstrap Gibble Lisp ("Prebirth")
|
||
*
|
||
* Copyright (C) 2017 Mike Gerwitz
|
||
*
|
||
* This file is part of Gibble.
|
||
*
|
||
* Gibble is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU Affero General Public License as
|
||
* published by the Free Software Foundation, either version 3 of the
|
||
* License, or (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Affero General Public License
|
||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*
|
||
* THIS IS TEMPORARY CODE that will be REWRITTEN IN GIBBLE LISP ITSELF after
|
||
* a very basic bootstrap is complete. It is retained as an important
|
||
* artifact for those who wish to build Gibble from scratch without using
|
||
* another version of Gibble itself. This is called "self-hosting".
|
||
*
|
||
* Rather than producing a sophisticated self-hosting language, this
|
||
* language will be a terribly incomplete and inadequate version of what
|
||
* will ultimately become a formidable and competent language.
|
||
*
|
||
* I refer to this entire complication process as "Prebirth".¹ The "Birth"
|
||
* of Gibble is the act of reimplementing this Prebirth in a Prebirth
|
||
* version of Gibble Lisp itself. It's the chicken-and-egg paradox, without
|
||
* the paradox.²
|
||
*
|
||
* Gibble Lisp is _not_ the most primitive language that will be understood
|
||
* by the system---it is too high-level. After Birth, the language can
|
||
* devolve into something more powerful and workable.
|
||
*
|
||
* Some minor terminology:
|
||
* - AST: Abstract Syntax Tree, a processed form of the CST.
|
||
* - CST: Concrete Syntax Tree, a 1-1 conversion of source input to
|
||
* tokens.
|
||
* - token: an object produced by the lexer that represents a portion of
|
||
* the input language
|
||
* - lexer: sometimes called a ``tokenizer''---produces tokens by applying
|
||
* the grammar to a string of input.
|
||
* - grammar: a definition of the language (syntax).
|
||
* - lexeme: the portion of the original source string associated with a
|
||
* given token.
|
||
* - LL(0): Left-to-right, Leftmost derivation, 0 tokens lookahead
|
||
* - sexp: symbolic expression, (involving (lots (of (((parentheses))))))
|
||
*
|
||
* Excited? Great! My extemporaneous rambling is costing me more time than
|
||
* I spent making this damn thing! (No, really, it is.)
|
||
*/
|
||
|
||
'use strict';
|
||
|
||
|
||
/**
|
||
* A very rudimentary (and extremely permissive) LL(0) Lisp parser
|
||
*
|
||
* This provides just enough to get by. It transforms lists into nested
|
||
* arrays of tokens with some very basic error checking (e.g. for proper
|
||
* nesting). This is not a general-purpose lisp parser.
|
||
*/
|
||
class Parser
|
||
{
|
||
/**
|
||
* Produce an AST from the given string SRC of sexps
|
||
*
|
||
* This is essentially the CST with whitespace removed. It first
|
||
* invokes the lexer to produce a token string from the input
|
||
* sexps SRC. From this, it verifies only proper nesting (that SRC does
|
||
* not close sexps too early and that EOF isn't reached before all sexps
|
||
* are closed) and produces an AST that is an isomorphism of the
|
||
* original sexps.
|
||
*
|
||
* @param {string} src input Lisp
|
||
*
|
||
* @throws {SyntaxError} on improper sexp nesting
|
||
*
|
||
* @return {Array} primitive abstract syntax tree of SRC
|
||
*/
|
||
parseLisp( src )
|
||
{
|
||
// token string from lexing
|
||
const toks = this._lex( src );
|
||
|
||
// perform a leftmost reduction on the token string
|
||
const [ depth, ast ] = toks.reduce( ( result, token ) =>
|
||
{
|
||
const [ depth, xs, stack ] = result;
|
||
const { type, pos } = token;
|
||
|
||
// there are very few token types to deal with (again, this is
|
||
// a very simple bootstrap lisp)
|
||
switch ( type )
|
||
{
|
||
// ignore comments
|
||
case 'comment':
|
||
return result;
|
||
|
||
// closing parenthesis (end of sexp)
|
||
case 'close':
|
||
if ( depth === 0 ) {
|
||
this._error(
|
||
src, pos, `Unexpected closing parenthesis`
|
||
);
|
||
}
|
||
|
||
// the sexp is complete; add to the AST, reduce depth
|
||
const top = stack.pop();
|
||
top.push( xs );
|
||
|
||
return [ ( depth - 1 ), top, stack ];
|
||
|
||
// opening parenthesis (start of sexp)
|
||
case 'open':
|
||
stack.push( xs );
|
||
return [ ( depth + 1 ), [], stack ];
|
||
|
||
// symbol or primitive; just copy the token in place
|
||
case 'string':
|
||
case 'symbol':
|
||
xs.push( token );
|
||
return [ depth, xs, stack ];
|
||
|
||
// should never happen unless there's a bug in the tokenizer
|
||
// or we forget a token type above
|
||
default:
|
||
this._error( src, pos, `Unexpected token '${type}'` );
|
||
}
|
||
}, [ 0, [], [] ] );
|
||
|
||
// if we terminate at a non-zero depth, that means there
|
||
// are still open sexps
|
||
if ( depth > 0 ) {
|
||
throw SyntaxError(
|
||
`Unexpected end of input at depth ${depth}`
|
||
);
|
||
}
|
||
|
||
// the result is a set of tokens organized into ES arrays
|
||
// isomorphic to the original sexp structure (the same structure)
|
||
return ast;
|
||
}
|
||
|
||
|
||
/**
|
||
* Throw a SyntaxError with a window of surrounding source code
|
||
*
|
||
* The "window" is simply ten characters to the left and right of the
|
||
* first character of the source input SRC that resulted in the error.
|
||
* It's a little more than useless.
|
||
*
|
||
* @param {string} src source code (sexps)
|
||
* @param {number} pos position of error
|
||
* @param {string} msg error message
|
||
*
|
||
* @throws {SyntaxError}}
|
||
*
|
||
* @return {undefined}
|
||
*/
|
||
_error( src, pos, msg )
|
||
{
|
||
const window = src.substr( pos - 10, pos + 10 )
|
||
.replace( "\n", " " );
|
||
|
||
throw new SyntaxError( `${msg}: '${window}'` );
|
||
}
|
||
|
||
|
||
/**
|
||
* Convert source input into a string of tokens
|
||
*
|
||
* This is the lexer. Whitespace is ignored. The grammar consists of
|
||
* simple s-expressions.
|
||
*
|
||
* This function is mutually recursive with `#_token'. It expects that
|
||
* the source SRC will be left-truncated as input is
|
||
* processed. POS exists for producing metadata for error
|
||
* reporting---it has no impact on parsing.
|
||
*
|
||
* @param {string} src source code
|
||
* @param {number} pos position (character offset) in source
|
||
*
|
||
* @return {Array} string of tokens
|
||
*/
|
||
_lex( src, pos = 0 )
|
||
{
|
||
// ignore whitespace, if any
|
||
const ws = src.match( /^\s+/ ) || [ "" ];
|
||
const trim = src.substr( ws[ 0 ].length );
|
||
|
||
// adjust position to account for any removed whitespace
|
||
pos += ws[ 0 ].length;
|
||
|
||
// EOF and we're done
|
||
if ( trim === '' ) {
|
||
return [];
|
||
}
|
||
|
||
// comment until end of line
|
||
if ( trim[ 0 ] === ';' ) {
|
||
const eol = trim.match( /^(.*?)(\n|$)/ );
|
||
return this._token( 'comment', eol[ 1 ], trim, pos );
|
||
}
|
||
|
||
// left and right parenthesis are handled in the same manner: they
|
||
// produce distinct tokens with single-character lexemes
|
||
if ( trim[ 0 ] === '(' ) {
|
||
return this._token( 'open', '(', trim, pos );
|
||
}
|
||
if ( trim[ 0 ] === ')' ) {
|
||
return this._token( 'close', ')', trim, pos );
|
||
}
|
||
|
||
// strings are delimited by opening and closing ASCII double quotes,
|
||
// which can be escaped with a backslash
|
||
if ( trim[ 0 ] === '"' ) {
|
||
const str = trim.match( /^"(|.*?[^\\])"/ );
|
||
if ( !str ) {
|
||
this._error( src, pos, "missing closing string delimiter" );
|
||
}
|
||
|
||
// a string token consists of the entire string including quotes
|
||
// as its lexeme, but its value will be the value of the string
|
||
// without quotes due to the `str' match group (see `#_token')
|
||
return this._token( 'string', str, trim, pos );
|
||
}
|
||
|
||
// anything else is considered a symbol up until whitespace or any
|
||
// of the aforementioned delimiters
|
||
const symbol = trim.match( /^[^\s()"]+/ );
|
||
return this._token( 'symbol', symbol, trim, pos );
|
||
}
|
||
|
||
|
||
/**
|
||
* Produce a token and recurse
|
||
*
|
||
* The token will be concatenated with the result of the mutually
|
||
* recursive method `_lex'.
|
||
*
|
||
* For the record: I'm not fond of mutual recursion from a clarity
|
||
* standpoint, but this is how the abstraction evolved to de-duplicate
|
||
* code, and I don't much feel like refactoring it.
|
||
*
|
||
* @param {string} type token type
|
||
* @param {string|Array} match lexeme match
|
||
* @param {string} src source code string, left-truncated
|
||
* @param {number} pos offset relative to original src
|
||
*
|
||
* @return {Array} string of tokens
|
||
*/
|
||
_token( type, match, src, pos )
|
||
{
|
||
const parts = ( Array.isArray( match ) )
|
||
? match
|
||
: [ match ];
|
||
|
||
// the value is the first group of the match (indicating what we
|
||
// are actually interested in), and the lexeme is the full match,
|
||
// which might include, for example, string delimiters
|
||
const [ lexeme, value ] = parts;
|
||
|
||
const token = {
|
||
type: type,
|
||
lexeme: lexeme,
|
||
value: ( value === undefined ) ? lexeme : value,
|
||
pos: pos
|
||
};
|
||
|
||
// continue producing tokens by recursing, left-truncating the
|
||
// source string to discard what we have already processed
|
||
return [ token ].concat(
|
||
this._lex(
|
||
src.substr( lexeme.length ),
|
||
( pos + lexeme.length )
|
||
)
|
||
);
|
||
}
|
||
};
|
||
|
||
|
||
|
||
/**
|
||
* Dumb compiler to transform AST into ECMAScript
|
||
*
|
||
* This is a really dumb code generator: it takes the AST and essentially
|
||
* transforms it 1:1 wherever possible into the target language.
|
||
*
|
||
* This is nothing like what we actually want the _ultimate_ compiler to do
|
||
* after Birth, but it gets us to a point where we can self-host on a basic
|
||
* Prebirth language and evolve from there.
|
||
*
|
||
* The code generation can be pretty much summed up by the last line of
|
||
* `Compiler#_cdfn'.
|
||
*/
|
||
class Compiler
|
||
{
|
||
/**
|
||
* Initialize with function map
|
||
*
|
||
* The function map will be used to map certain functions into other
|
||
* names or forms. For example, `js:console' may map to `console.log'
|
||
* and `if' to an `if' statement+expression.
|
||
*
|
||
* @param {Object} fnmap function map
|
||
*/
|
||
constructor( fnmap )
|
||
{
|
||
this._fnmap = fnmap;
|
||
}
|
||
|
||
|
||
/**
|
||
* Compile AST into ECMAScript
|
||
*
|
||
* Every function is mapped 1:1 to a function in ECMAScript. So, we
|
||
* just map all root children (which are expected to be Scheme-style
|
||
* shorthand function definitions) to functions.
|
||
*
|
||
* @param {Array} tree root containing top-level function definitions
|
||
*/
|
||
compile( tree )
|
||
{
|
||
// map every definition to a ES function definition and delimit them
|
||
// (for readability) by two newlines
|
||
return tree.map( this._cdfn.bind( this ) )
|
||
.join( "\n\n" ) + "\n";
|
||
}
|
||
|
||
|
||
/**
|
||
* Compile function definition into a ES function definition
|
||
*
|
||
* This will fail if the given token is not a `define'.
|
||
*
|
||
* @param {Object} t token
|
||
*
|
||
* @return {string} compiled function definition
|
||
*/
|
||
_cdfn( t )
|
||
{
|
||
// an application must be an s-expression
|
||
if ( !Array.isArray( t ) ) {
|
||
throw Error(
|
||
`\`${name}' application expected, found symbol \`${t.value}'`
|
||
);
|
||
}
|
||
|
||
// if it's not a definition, then it's a top-level application
|
||
if ( t[ 0 ].value !== 'define' )
|
||
{
|
||
return this._sexpToEs( t ) + ';';
|
||
}
|
||
|
||
// e.g. (define (foo ...) body)
|
||
const [ , [ { value: name }, ...params ], ...body ] = t;
|
||
|
||
const id = this._idFromName( name, true );
|
||
const paramjs = this._paramsToEs( params );
|
||
const bodyjs = this._bodyToEs( body );
|
||
|
||
// this is the final format---each function becomes its own function
|
||
// definition in ES
|
||
return `function ${id}(${paramjs})\n{\n${bodyjs}\n};`;
|
||
}
|
||
|
||
|
||
/**
|
||
* Compile parameter list
|
||
*
|
||
* This simply takes the value of the symbol and outputs it (formatted),
|
||
* delimited by commas.
|
||
*
|
||
* @param {Array} args token parameter list
|
||
*
|
||
* @return {string} compiled parameter list
|
||
*/
|
||
_paramsToEs( args )
|
||
{
|
||
return args.map( ({ value: name }) => this._idFromName( name ) )
|
||
.join( ", " );
|
||
}
|
||
|
||
|
||
/**
|
||
* Generate ECMAScript-friendly name from the given id
|
||
*
|
||
* A subset of special characters that are acceptable in Scheme are
|
||
* converted in an identifiable manner; others are simply converted to
|
||
* `$' in a catch-all and therefore could result in conflicts and cannot
|
||
* be reliably distinguished from one-another. Remember: this is
|
||
* temporary code.
|
||
*
|
||
* @param {string} name source name
|
||
* @param {boolean} global whether identifier should be globally unique
|
||
*
|
||
* @return {string} ES-friendly identifier
|
||
*/
|
||
_idFromName( name, global )
|
||
{
|
||
// just some common ones; will fall back to `$' below
|
||
const conv = {
|
||
'-': '$_$',
|
||
'?': '$7$',
|
||
'@': '$a$',
|
||
'!': '$b$',
|
||
'>': '$g$',
|
||
'#': '$h$',
|
||
'*': '$k$',
|
||
'<': '$l$',
|
||
'&': '$n$',
|
||
'%': '$o$',
|
||
'+': '$p$',
|
||
'=': '$q$',
|
||
'^': '$v$',
|
||
'/': '$w$',
|
||
'$': '$$',
|
||
};
|
||
|
||
if ( name === undefined ) {
|
||
throw SyntaxError( "Missing identifier name" );
|
||
}
|
||
|
||
return ( global ? '$$' : '' ) +
|
||
name.replace( /[^a-zA-Z0-9_]/g, c => conv[ c ] || '$' );
|
||
}
|
||
|
||
|
||
/**
|
||
* Compile body s-expressions into ECMAScript
|
||
*
|
||
* This produces a 1:1 mapping of BODY s-expressions to ES statements,
|
||
* recursively. The heavy lifting is done by `#_sexpToEs'.
|
||
*
|
||
* @param {Array} body s-expressions representing function body
|
||
*
|
||
* @return {string} compiled BODY
|
||
*/
|
||
_bodyToEs( body )
|
||
{
|
||
// the body must be an array of expressions (this should always be
|
||
// the case unless we have a bug in the compiler)
|
||
if ( !Array.isArray( body ) ) {
|
||
throw Error( "body must be an Array" );
|
||
}
|
||
|
||
// process each s-expression in BODY
|
||
const js = body.map( this._sexpToEs.bind( this ) );
|
||
|
||
// the result (that is, an array of compiled s-expressions) is
|
||
// joined semicolon-delimited, with a `return' statement preceding
|
||
// the final expression
|
||
return js.map( ( s, i ) =>
|
||
{
|
||
const ret = ( i === ( js.length - 1 ) ) ? "return " : "";
|
||
return ` ${ret}${s};`;
|
||
} ).join( '\n' );
|
||
}
|
||
|
||
|
||
/**
|
||
* Convert s-expression or scalar into ECMAScript
|
||
*
|
||
* T may be either an array of tokens or a primitive token (e.g. string,
|
||
* symbol). This method is applied recursively to T as needed if T is
|
||
* an array.
|
||
*
|
||
* @param {Array|Object} t tokens representing s-expressions/scalars
|
||
*
|
||
* @return {string} compiled s-expression/scalar
|
||
*/
|
||
_sexpToEs( t )
|
||
{
|
||
// just output symbols as identifiers as-is for now
|
||
if ( !Array.isArray( t ) ) {
|
||
switch ( t.type )
|
||
{
|
||
// strings are output as-is (note that we don't escape
|
||
// double quotes, because the method of escaping them is the
|
||
// same in Scheme as it is in ECMAScript---a backslash)
|
||
case 'string':
|
||
return `"${t.value}"`;
|
||
|
||
// symbols have the same concerns as function definitions: the
|
||
// identifiers generated need to be ES-friendly
|
||
case 'symbol':
|
||
return this._idFromName( t.value );
|
||
|
||
default:
|
||
throw Error( `Cannot compile unknown token \`${t.type}'` );
|
||
}
|
||
}
|
||
|
||
// simple function application (fn ...args)
|
||
const [ { value: fn }, ...args ] = t;
|
||
|
||
const mapentry = this._fnmap[ fn ];
|
||
|
||
// if the fnmap contains a function entry, then it will handle the
|
||
// remaining processing
|
||
if ( mapentry && ( typeof mapentry === 'function' ) ) {
|
||
return mapentry(
|
||
args,
|
||
this._sexpToEs.bind( this ),
|
||
this._bodyToEs.bind( this )
|
||
);
|
||
}
|
||
|
||
// convert all remaining symbols (after the symbol representing the
|
||
// function application) into arguments by parsing their sexps or
|
||
// scalar values
|
||
const idfn = mapentry || this._idFromName( fn, true );
|
||
const argstr = args.map( arg => this._sexpToEs( arg ) ).join( ", " );
|
||
|
||
// final function application
|
||
return `${idfn}(${argstr})`;
|
||
}
|
||
}
|
||
|
||
|
||
/**
|
||
* Function aliases and special forms
|
||
*
|
||
* This map allows for a steady transition---items can be removed as they
|
||
* are written in Prebirth Lisp. This should give us a sane (but still
|
||
* simple) environment with which we can start to self-host.
|
||
*
|
||
* String values are simple function aliases. Function values take over the
|
||
* compilation of that function and allow for defining special forms. The
|
||
* first argument to the function is the list of raw arguments (not yet
|
||
* compiled); the second argument is `Compiler#_sexpToEs'; and the third is
|
||
* `Compiler#bodyToEs'.
|
||
*
|
||
* These are by no means meant to be solid implementations.
|
||
*
|
||
* @type {Object}
|
||
*/
|
||
const fnmap = {
|
||
'js:console': 'console.log',
|
||
|
||
// simple if statement with optional else, wrapped in a self-executing
|
||
// function to simplify code generation (e.g. returning an if)
|
||
'if': ( [ pred, t, f ], stoes ) =>
|
||
"(function(){" +
|
||
`if (${stoes(pred)}){return ${stoes(t)};}` +
|
||
( ( f === undefined ) ? '' : `else{return ${stoes(f)};}` ) +
|
||
"})()",
|
||
|
||
// (let ((binding val) ...) ...body), compiled as a self-executing
|
||
// function which allows us to easily represent the return value of the
|
||
// entire expression while maintaining local scope
|
||
'let*': ( [ bindings, ...body ], stoes, btoes ) =>
|
||
"(function(){\n" +
|
||
bindings
|
||
.map( ([ x, val ]) => ` const ${stoes(x)} = ${stoes(val)};\n` )
|
||
.join( '' ) +
|
||
btoes( body ) + "\n" +
|
||
" })()",
|
||
|
||
// similar to the above, but variables cannot reference one-another
|
||
'let': ( [ bindings, ...body ], stoes, btoes ) =>
|
||
"(function(" +
|
||
bindings.map( ([ x ]) => stoes( x ) ).join( ", " ) +
|
||
"){\n" +
|
||
btoes( body ) + "\n" +
|
||
"})(" +
|
||
bindings.map( ([ , val ]) => stoes( val ) ).join( ", " ) +
|
||
")",
|
||
};
|
||
|
||
|
||
|
||
/*
|
||
* Prebirth was originally intended to be run via the command line using
|
||
* Node.js. But it doesn't have to be. If you want, feel free to run it in
|
||
* your web browser; you'll just have to instantiate your own objects.
|
||
*/
|
||
( function ()
|
||
{
|
||
if ( typeof process === 'undefined' )
|
||
{
|
||
return;
|
||
}
|
||
|
||
const p = new Parser();
|
||
const c = new Compiler( fnmap );
|
||
|
||
const fs = require( 'fs' );
|
||
const src = fs.readFileSync( '/dev/stdin' ).toString();
|
||
const tree = p.parseLisp( src );
|
||
const lib = fs.readFileSync( __dirname + '/libprebirth.js' ).toString();
|
||
|
||
// output libprebirth and compiled output, wrapped in a self-executing
|
||
// function to limit scope
|
||
process.stdout.write( "(function(){" );
|
||
process.stdout.write( lib + '\n\n' );
|
||
process.stdout.write( c.compile( tree ) );
|
||
process.stdout.write( "})();\n" );
|
||
} )();
|
||
|
||
|
||
|
||
/*
|
||
* Now that we have output, the next step is the hard part: rewriting this
|
||
* file in Prebirth Lisp. As I mentioned, this process is called
|
||
* "Birth". It's at this point that we have to decide on basic
|
||
* abstractions---we are starting from scratch. The initial implementation
|
||
* is therefore unlikely to be as concise and elegant as Prebirth
|
||
* itself---it will be refactored.
|
||
*
|
||
* Here is an example Hello, World!:
|
||
*
|
||
* (define (hello x)
|
||
* (js:console "Hello," x, "!"))
|
||
*
|
||
*
|
||
* ¹ This term should invoke visuals of an abstract being entering existence
|
||
* in some strange nonlinear-time² kind of way. If you thought of
|
||
* something less pleasant, well, I'm sorry you went through that.
|
||
*
|
||
* ² Because we're dealing with nonlinear time!¹ This would be some bizarre
|
||
* recursive footnote crap if it weren't for that.²
|
||
*/
|