Mike Gerwitz
e6640c0019
This invokes clippy as part of `make check` now, which I had previously avoided doing (I'll elaborate on that below). This commit represents the changes needed to resolve all the warnings presented by clippy. Many changes have been made where I find the lints to be useful and agreeable, but there are a number of lints, rationalized in `src/lib.rs`, where I found the lints to be disagreeable. I have provided rationale, primarily for those wondering why I desire to deviate from the default lints, though it does feel backward to rationalize why certain lints ought to be applied (the reverse should be true). With that said, this did catch some legitimage issues, and it was also helpful in getting some older code up-to-date with new language additions that perhaps I used in new code but hadn't gone back and updated old code for. My goal was to get clippy working without errors so that, in the future, when others get into TAMER and are still getting used to Rust, clippy is able to help guide them in the right direction. One of the reasons I went without clippy for so long (though I admittedly forgot I wasn't using it for a period of time) was because there were a number of suggestions that I found disagreeable, and I didn't take the time to go through them and determine what I wanted to follow. Furthermore, it was hard to make that judgment when I was new to the language and lacked the necessary experience to do so. One thing I would like to comment further on is the use of `format!` with `expect`, which is also what the diagnostic system convenience methods do (which clippy does not cover). Because of all the work I've done trying to understand Rust and looking at disassemblies and seeing what it optimizes, I falsely assumed that Rust would convert such things into conditionals in my otherwise-pure code...but apparently that's not the case, when `format!` is involved. I noticed that, after making the suggested fix with `get_ident`, Rust proceeded to then inline it into each call site and then apply further optimizations. It was also previously invoking the thread lock (for the interner) unconditionally and invoking the `Display` implementation. That is not at all what I intended for, despite knowing the eager semantics of function calls in Rust. Anyway, possibly more to come on that, I'm just tired of typing and need to move on. I'll be returning to investigate further diagnostic messages soon. |
||
---|---|---|
bin | ||
build-aux | ||
core | ||
design/tpl | ||
doc | ||
progtest | ||
rater | ||
src | ||
tamer | ||
test | ||
tools | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
.rev-xmle | ||
.rev-xmlo | ||
COPYING | ||
COPYING.FDL | ||
HACKING | ||
Makefile.am | ||
README.md | ||
RELEASES.md | ||
VERSION.in | ||
bootstrap | ||
c1map.xsd | ||
configure.ac | ||
package-lock.json |
README.md
TAME
TAME is The Algebraic Metalanguage, a programming language and system of tools designed to aid in the development, understanding, and maintenance of systems performing numerous calculations on a complex graph of dependencies, conditions, and a large number of inputs.
This system was developed at Ryan Specialty Group (formerly LoVullo Associates) to handle the complexity of comparative insurance rating systems. It is a domain-specific language (DSL) that itself encourages, through the use of templates, the creation of sub-DSLs. TAME itself is at heart a calculator—processing only numerical input and output—driven by quantifiers as predicates. Calculations and quantifiers are written declaratively without concern for order of execution.
The system has powerful dependency resolution and data flow capabilities.
TAME consists of a macro processor (implementing a metalanguage), numerous compilers for various targets (JavaScript, HTML documentation and debugging environment, LaTeX, and others), linkers, and supporting tools. The input grammar is XML, and the majority of the project (including the macro processor, compilers, and linkers) is written in a combination of XSLT and Rust.
TAMER
Due to performance requirements, this project is currently being reimplemented in Rust. That project can be found in the tamer/ directory.
Documentation
Compiled documentation for the latest release is available via our GitLab mirror, which uses the same build pipeline as we do on our internal GitLab instance. Available formats are:
Getting Started
To get started, make sure Saxon version 9 or later is available and its path
set as SAXON_CP
; that the path to hoxsl is set via HOXSL
; and then run
the bootstrap
script:
$ export SAXON_CP=/path/to/saxon9he.jar
$ export HOXSL=/path/to/hoxsl/root
$ ./boostrap
Running Test Cases
To run the test cases, invoke make check
(or its alias, make test
).
Testing Core Features
In order to run tests located at core/test/core/**
, a supporting environment
is required. (e.g. mega rater). Inside a supporting rater, either check out a
submodule containing the core tests, or temporarily add them into the
submodule.
Build the core test suite summary page using:
$ make rater/core/test/core/suite.html
Visit the summary page in a web browser and click the Calculate Premium button. If all test cases pass, it will yield a value of $1.
Hacking
Information for TAME developers can be found in the file HACKING
.
License
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.