tame/tamer/src/asg/air/expr/test.rs

891 lines
27 KiB
Rust

// Tests for ASG IR expression parsing
//
// Copyright (C) 2014-2023 Ryan Specialty, LLC.
//
// This file is part of TAME.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
use super::*;
use crate::span::dummy::*;
use crate::{
asg::{
air::{
test::{
air_ctx_from_pkg_body_toks, air_ctx_from_toks,
parse_as_pkg_body, pkg_expect_ident_obj, pkg_expect_ident_oi,
pkg_lookup,
},
Air::*,
AirAggregate,
},
graph::object::{expr::ExprRel, Doc, ObjectRel},
ExprOp, Ident,
},
parse::util::spair,
};
use std::assert_matches::assert_matches;
type Sut = AirAggregate;
pub fn collect_subexprs(
asg: &Asg,
oi: ObjectIndex<Expr>,
) -> Vec<(ObjectIndex<Expr>, &Expr)> {
oi.edges(&asg)
.filter_map(|rel| rel.narrow::<Expr>())
.map(|oi| (oi, oi.resolve(&asg)))
.collect::<Vec<_>>()
}
#[test]
fn expr_empty_ident() {
let id = spair("foo", S2);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
BindIdent(id),
ExprEnd(S3),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
// The expression should have been bound to this identifier so that
// we're able to retrieve it from the graph by name.
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id);
assert_eq!(expr.span(), S1.merge(S3).unwrap());
}
#[test]
fn expr_without_pkg() {
let toks = [
// No package
// (because we're not parsing with `parse_as_pkg_body` below)
ExprStart(ExprOp::Sum, S1),
// RECOVERY
PkgStart(S2, spair("/pkg", S2)),
PkgEnd(S3),
];
assert_eq!(
vec![
Err(ParseError::StateError(AsgError::PkgExpected(S1))),
// RECOVERY
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // PkgEnd
],
Sut::parse(toks.into_iter()).collect::<Vec<_>>(),
);
}
// Note that this can't happen in e.g. NIR / TAME's source XML.
#[test]
fn close_pkg_mid_expr() {
let id = spair("foo", S4);
#[rustfmt::skip]
let toks = [
PkgStart(S1, spair("/pkg", S1)),
ExprStart(ExprOp::Sum, S2),
PkgEnd(S3),
// RECOVERY: Let's finish the expression first...
BindIdent(id),
ExprEnd(S5),
// ...and then try to close again.
PkgEnd(S6),
];
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
Err(ParseError::StateError(AsgError::InvalidPkgEndContext(S3))),
// RECOVERY: We should be able to close the package if we
// just finish the expression first,
// demonstrating that recovery properly maintains all
// state.
Ok(Parsed::Incomplete), // BindIdent
Ok(Parsed::Incomplete), // ExprEnd
// Successful close here.
Ok(Parsed::Incomplete), // PkgEnd
],
Sut::parse(toks.into_iter()).collect::<Vec<_>>(),
);
}
#[test]
fn open_pkg_mid_expr() {
let pkg_a = spair("/pkg", S1);
let pkg_nested = spair("/pkg-nested", S3);
let id = spair("foo", S4);
#[rustfmt::skip]
let toks = [
PkgStart(S1, pkg_a),
ExprStart(ExprOp::Sum, S2),
PkgStart(S3, pkg_nested),
// RECOVERY: We should still be able to complete successfully.
BindIdent(id),
ExprEnd(S5),
// Closes the _original_ package.
PkgEnd(S6),
];
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
Err(ParseError::StateError(AsgError::NestedPkgStart(
(S3, pkg_nested),
(S1, pkg_a),
))),
// RECOVERY: Ignore the open and continue.
// Of course,
// this means that any identifiers would be defined in a
// different package than was likely intended,
// but at least we'll be able to keep processing.
Ok(Parsed::Incomplete), // BindIdent
Ok(Parsed::Incomplete), // ExprEnd
Ok(Parsed::Incomplete), // PkgEnd
],
Sut::parse(toks.into_iter()).collect::<Vec<_>>(),
);
}
#[test]
fn expr_non_empty_ident_root() {
let id_a = spair("foo", S2);
let id_b = spair("bar", S2);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
// Identifier while still empty...
BindIdent(id_a),
ExprStart(ExprOp::Sum, S3),
// (note that the inner expression _does not_ have an ident
// binding)
ExprEnd(S4),
// ...and an identifier non-empty.
BindIdent(id_b),
ExprEnd(S6),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
let expr_a = pkg_expect_ident_obj::<Expr>(&ctx, id_a);
assert_eq!(expr_a.span(), S1.merge(S6).unwrap());
// Identifiers should reference the same expression.
let expr_b = pkg_expect_ident_obj::<Expr>(&ctx, id_b);
assert_eq!(expr_a, expr_b);
}
// Binding an identifier after a child expression means that the parser is
// creating an expression that is a child of a dangling expression,
// which only becomes reachable at the end.
#[test]
fn expr_non_empty_bind_only_after() {
let id = spair("foo", S2);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
// Expression root is still dangling at this point.
ExprStart(ExprOp::Sum, S2),
ExprEnd(S3),
// We only bind an identifier _after_ we've created the expression,
// which should cause the still-dangling root to become
// reachable.
BindIdent(id),
ExprEnd(S5),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id);
assert_eq!(expr.span(), S1.merge(S5).unwrap());
}
// Danging expressions are unreachable and therefore not useful
// constructions.
// Prohibit them,
// since they're either mistakes or misconceptions.
#[test]
fn expr_dangling_no_subexpr() {
let toks = [
ExprStart(ExprOp::Sum, S1),
// No `BindIdent`,
// so this expression is dangling.
ExprEnd(S2),
];
// The error span should encompass the entire expression.
let full_span = S1.merge(S2).unwrap();
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete),
Err(ParseError::StateError(AsgError::DanglingExpr(full_span))),
// RECOVERY
Ok(Parsed::Incomplete), // PkgEnd
],
parse_as_pkg_body(toks).collect::<Vec<_>>(),
);
}
#[test]
fn expr_dangling_with_subexpr() {
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
// Expression root is still dangling at this point.
ExprStart(ExprOp::Sum, S2),
ExprEnd(S3),
// Still no ident binding,
// so root should still be dangling.
ExprEnd(S4),
];
let full_span = S1.merge(S4).unwrap();
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // ExprEnd
Err(ParseError::StateError(AsgError::DanglingExpr(full_span))),
// RECOVERY
Ok(Parsed::Incomplete), // PkgEnd
],
parse_as_pkg_body(toks).collect::<Vec<_>>(),
);
}
#[test]
fn expr_dangling_with_subexpr_ident() {
let id = spair("foo", S3);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
// Expression root is still dangling at this point.
ExprStart(ExprOp::Sum, S2),
// The _inner_ expression receives an identifier,
// but that should have no impact on the dangling status of
// the root,
// especially given that subexpressions are always reachable
// anyway.
BindIdent(id),
ExprEnd(S4),
// But the root still has no ident binding,
// and so should still be dangling.
ExprEnd(S5),
];
let full_span = S1.merge(S5).unwrap();
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // BindIndent
Ok(Parsed::Incomplete), // ExprEnd
Err(ParseError::StateError(AsgError::DanglingExpr(full_span))),
// RECOVERY
Ok(Parsed::Incomplete), // PkgEnd
],
parse_as_pkg_body(toks).collect::<Vec<_>>(),
);
}
// Ensure that the parser correctly recognizes dangling expressions after
// having encountered a reachable expression.
// Ideally the parser will have been written to make this impossible,
// but this also protects against potential future breakages.
#[test]
fn expr_reachable_subsequent_dangling() {
let id = spair("foo", S2);
#[rustfmt::skip]
let toks = [
// Reachable
ExprStart(ExprOp::Sum, S1),
BindIdent(id),
ExprEnd(S3),
// Dangling
ExprStart(ExprOp::Sum, S4),
ExprEnd(S5),
];
// The error span should encompass the entire expression.
// TODO: ...let's actually have something inside this expression.
let second_span = S4.merge(S5).unwrap();
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
// Reachable
Ok(Parsed::Incomplete),
Ok(Parsed::Incomplete),
Ok(Parsed::Incomplete),
// Dangling
Ok(Parsed::Incomplete),
Err(ParseError::StateError(AsgError::DanglingExpr(second_span))),
// RECOVERY
Ok(Parsed::Incomplete), // PkgEnd
],
parse_as_pkg_body(toks).collect::<Vec<_>>(),
);
}
// Recovery from dangling expression.
#[test]
fn recovery_expr_reachable_after_dangling() {
let id = spair("foo", S4);
#[rustfmt::skip]
let toks = [
// Dangling
ExprStart(ExprOp::Sum, S1),
ExprEnd(S2),
// Reachable, after error from dangling.
ExprStart(ExprOp::Sum, S3),
BindIdent(id),
ExprEnd(S5),
];
// The error span should encompass the entire expression.
let err_span = S1.merge(S2).unwrap();
let mut sut = parse_as_pkg_body(toks);
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete),
Err(ParseError::StateError(AsgError::DanglingExpr(err_span))),
// RECOVERY: continue at this point with the next expression.
Ok(Parsed::Incomplete),
Ok(Parsed::Incomplete),
Ok(Parsed::Incomplete),
Ok(Parsed::Incomplete), // PkgEnd
],
sut.by_ref().collect::<Vec<_>>(),
);
let ctx = sut.finalize().unwrap().into_private_context();
// Let's make sure that we _actually_ added it to the graph,
// despite the previous error.
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id);
assert_eq!(expr.span(), S3.merge(S5).unwrap());
// The dangling expression may or may not be on the graph,
// but it doesn't matter;
// we cannot reference it
// (unless we break abstraction and walk the underlying graph).
// Let's leave this undefined so that we have flexibility in what we
// decide to do in the future.
// So we end here.
}
#[test]
fn expr_close_unbalanced() {
let id = spair("foo", S3);
#[rustfmt::skip]
let toks = [
// Close before _any_ open.
ExprEnd(S1),
// Should recover,
// allowing for a normal expr.
ExprStart(ExprOp::Sum, S2),
BindIdent(id),
ExprEnd(S4),
// And now an extra close _after_ a valid expr.
ExprEnd(S5),
];
let mut sut = parse_as_pkg_body(toks);
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Err(ParseError::StateError(AsgError::UnbalancedExpr(S1))),
// RECOVERY
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // BindIdent
Ok(Parsed::Incomplete), // ExprEnd
// Another error after a successful expression.
Err(ParseError::StateError(AsgError::UnbalancedExpr(S5))),
// RECOVERY
Ok(Parsed::Incomplete), // PkgEnd
],
sut.by_ref().collect::<Vec<_>>(),
);
let ctx = sut.finalize().unwrap().into_private_context();
// Just verify that the expression was successfully added after recovery.
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id);
assert_eq!(expr.span(), S2.merge(S4).unwrap());
}
// Subexpressions should not only have edges to their parent,
// but those edges ought to be ordered,
// allowing TAME to handle non-commutative expressions.
// We must further understand the relative order in which edges are stored
// for non-associative expressions.
#[test]
fn sibling_subexprs_have_ordered_edges_to_parent() {
let id_root = spair("root", S1);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
// Identify the root so that it is not dangling.
BindIdent(id_root),
// Sibling A
ExprStart(ExprOp::Sum, S3),
ExprEnd(S4),
// Sibling B
ExprStart(ExprOp::Sum, S5),
ExprEnd(S6),
// Sibling C
ExprStart(ExprOp::Sum, S7),
ExprEnd(S8),
ExprEnd(S9),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
let asg = ctx.asg_ref();
// The root is the parent expression that should contain edges to each
// subexpression
// (the siblings above).
// Note that we retrieve its _index_,
// not the object itself.
let oi_root = pkg_expect_ident_oi::<Expr>(&ctx, id_root);
let siblings = oi_root
.edges_filtered::<Expr>(&asg)
.map(ObjectIndex::cresolve(&asg))
.collect::<Vec<_>>();
// The reversal here is an implementation detail with regards to how
// Petgraph stores its edges as effectively linked lists,
// using node indices instead of pointers.
// It is very important that we understand this behavior.
assert_eq!(siblings.len(), 3);
assert_eq!(siblings[2].span(), S3.merge(S4).unwrap());
assert_eq!(siblings[1].span(), S5.merge(S6).unwrap());
assert_eq!(siblings[0].span(), S7.merge(S8).unwrap());
}
#[test]
fn nested_subexprs_related_to_relative_parent() {
let id_root = spair("root", S1);
let id_suba = spair("suba", S2);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1), // 0
BindIdent(id_root),
ExprStart(ExprOp::Sum, S2), // 1
BindIdent(id_suba),
ExprStart(ExprOp::Sum, S3), // 2
ExprEnd(S4),
ExprEnd(S5),
ExprEnd(S6),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
let asg = ctx.asg_ref();
let oi_0 = pkg_expect_ident_oi::<Expr>(&ctx, id_root);
let subexprs_0 = collect_subexprs(&asg, oi_0);
// Subexpr 1
assert_eq!(subexprs_0.len(), 1);
let (oi_1, subexpr_1) = subexprs_0[0];
assert_eq!(subexpr_1.span(), S2.merge(S5).unwrap());
let subexprs_1 = collect_subexprs(&asg, oi_1);
// Subexpr 2
assert_eq!(subexprs_1.len(), 1);
let (_, subexpr_2) = subexprs_1[0];
assert_eq!(subexpr_2.span(), S3.merge(S4).unwrap());
}
#[test]
fn expr_redefine_ident() {
// Same identifier but with different spans
// (which would be the case in the real world).
let id_first = spair("foo", S2);
let id_dup = spair("foo", S3);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
BindIdent(id_first),
ExprStart(ExprOp::Sum, S3),
BindIdent(id_dup),
ExprEnd(S4),
ExprEnd(S5),
];
let mut sut = parse_as_pkg_body(toks);
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // BindIdent (first)
Ok(Parsed::Incomplete), // ExprStart
Err(ParseError::StateError(AsgError::IdentRedefine(
id_first,
id_dup.span(),
))),
// RECOVERY: Ignore the attempt to redefine and continue.
Ok(Parsed::Incomplete), // ExprEnd
Ok(Parsed::Incomplete), // ExprEnd
Ok(Parsed::Incomplete), // PkgEnd
],
sut.by_ref().collect::<Vec<_>>(),
);
let ctx = sut.finalize().unwrap().into_private_context();
// The identifier should continue to reference the first expression.
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id_first);
assert_eq!(expr.span(), S1.merge(S5).unwrap());
}
// Similar to the above test,
// but with two entirely separate expressions,
// such that a failure to identify an expression ought to leave it in an
// unreachable state.
#[test]
fn expr_still_dangling_on_redefine() {
// Same identifier but with different spans
// (which would be the case in the real world).
let id_first = spair("foo", S2);
let id_dup = spair("foo", S5);
let id_dup2 = spair("foo", S8);
let id_second = spair("bar", S9);
#[rustfmt::skip]
let toks = [
// First expr (OK)
ExprStart(ExprOp::Sum, S1),
BindIdent(id_first),
ExprEnd(S3),
// Second expr should still dangle due to use of duplicate
// identifier
ExprStart(ExprOp::Sum, S4),
BindIdent(id_dup),
ExprEnd(S6),
// Third expr will error on redefine but then be successful.
// This probably won't happen in practice with TAME's original
// source language,
// but could happen at e.g. a REPL.
ExprStart(ExprOp::Sum, S7),
BindIdent(id_dup2), // fail
BindIdent(id_second), // succeed
ExprEnd(S10),
];
let mut sut = parse_as_pkg_body(toks);
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // BindIdent (first)
Ok(Parsed::Incomplete), // ExprEnd
// Beginning of second expression
Ok(Parsed::Incomplete), // ExprStart
Err(ParseError::StateError(AsgError::IdentRedefine(
id_first,
id_dup.span(),
))),
// RECOVERY: Ignore the attempt to redefine and continue.
// ...but then immediately fail _again_ because we've closed a
// dangling expression.
Err(ParseError::StateError(AsgError::DanglingExpr(
S4.merge(S6).unwrap()
))),
// RECOVERY: But we'll continue onto one final expression,
// which we will fail to define but then subsequently define
// successfully.
Ok(Parsed::Incomplete), // ExprStart
Err(ParseError::StateError(AsgError::IdentRedefine(
id_first,
id_dup2.span(),
))),
// RECOVERY: Despite the initial failure,
// we can now re-attempt to bind with a unique id.
Ok(Parsed::Incomplete), // BindIdent (second)
Ok(Parsed::Incomplete), // ExprEnd
Ok(Parsed::Incomplete), // PkgEnd
],
sut.by_ref().collect::<Vec<_>>(),
);
let ctx = sut.finalize().unwrap().into_private_context();
// The identifier should continue to reference the first expression.
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id_first);
assert_eq!(expr.span(), S1.merge(S3).unwrap());
// There's nothing we can do using the ASG's public API at the time of
// writing to try to reference the dangling expression.
// The second identifier should have been successfully bound despite the
// failed initial attempt.
let expr = pkg_expect_ident_obj::<Expr>(&ctx, id_second);
assert_eq!(expr.span(), S7.merge(S10).unwrap());
}
#[test]
fn expr_ref_to_ident() {
let id_foo = spair("foo", S2);
let id_bar = spair("bar", S6);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
BindIdent(id_foo),
// Reference to an as-of-yet-undefined id (okay),
// with a different span than `id_bar`.
RefIdent(spair("bar", S3)),
ExprEnd(S4),
//
// Another expression to reference the first
// (we don't handle cyclic references until a topological sort,
// so no point in referencing ourselves;
// it'd work just fine here.)
ExprStart(ExprOp::Sum, S5),
BindIdent(id_bar),
ExprEnd(S7),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
let asg = ctx.asg_ref();
let oi_foo = pkg_expect_ident_oi::<Expr>(&ctx, id_foo);
let mut foo_rels = oi_foo
.edges(&asg)
.filter_map(ExprRel::narrows_into::<Ident>)
.collect::<Vec<_>>();
// We should have only a single reference (to `id_bar`).
assert_eq!(foo_rels.len(), 1);
let oi_ident_bar =
foo_rels.pop().and_then(ExprRel::narrow::<Ident>).unwrap();
let ident_bar = oi_ident_bar.resolve(&asg);
// The identifier will have originally been `Missing`,
// since it did not exist at the point of reference.
// But it should now properly identify the other expression.
assert_matches!(ident_bar, Ident::Transparent(..));
// The span of the identifier must be updated with the defining
// `BindIdent`,
// otherwise it'll be the location of the `RefIdent` that originally
// added it as `Missing`.
assert_eq!(ident_bar.span(), id_bar.span());
let oi_expr_bar = pkg_expect_ident_oi::<Expr>(&ctx, id_bar);
assert!(oi_ident_bar.is_bound_to(&asg, oi_expr_bar));
}
#[test]
fn idents_share_defining_pkg() {
let id_foo = spair("foo", S3);
let id_bar = spair("bar", S5);
let id_baz = spair("baz", S6);
// An expression nested within another.
#[rustfmt::skip]
let toks = [
PkgStart(S1, spair("/pkg", S1)),
ExprStart(ExprOp::Sum, S2),
BindIdent(id_foo),
ExprStart(ExprOp::Sum, S4),
BindIdent(id_bar),
RefIdent(id_baz),
ExprEnd(S7),
ExprEnd(S8),
PkgEnd(S9),
];
let ctx = air_ctx_from_toks(toks);
let asg = ctx.asg_ref();
let oi_foo = pkg_lookup(&ctx, id_foo).unwrap();
let oi_bar = pkg_lookup(&ctx, id_bar).unwrap();
assert_eq!(oi_foo.src_pkg(asg).unwrap(), oi_bar.src_pkg(asg).unwrap());
// Missing identifiers should not have a source package,
// since we don't know what defined it yet.
let oi_baz = pkg_lookup(&ctx, id_baz).unwrap();
assert_eq!(None, oi_baz.src_pkg(asg));
// The package span should encompass the entire definition.
assert_eq!(
S1.merge(S9),
oi_foo.src_pkg(asg).map(|pkg| pkg.resolve(asg).span())
)
}
#[test]
fn expr_doc_short_desc() {
let id_expr = spair("foo", S2);
let clause = spair("short desc", S3);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
BindIdent(id_expr),
DocIndepClause(clause),
ExprEnd(S4),
];
let ctx = air_ctx_from_pkg_body_toks(toks);
let asg = ctx.asg_ref();
let oi_expr = pkg_expect_ident_oi::<Expr>(&ctx, id_expr);
let oi_docs = oi_expr
.edges_filtered::<Doc>(&asg)
.map(ObjectIndex::cresolve(&asg));
assert_eq!(
vec![&Doc::new_indep_clause(clause)],
oi_docs.collect::<Vec<_>>(),
);
}
// Binding an abstract identifier to an expression means that the expression
// may _eventually_ be reachable after expansion,
// but it is not yet.
// They must therefore only be utilized within the context of a container
// that supports dangling expressions,
// like a template.
#[test]
fn abstract_bind_without_dangling_container() {
let id_meta = spair("@foo@", S2);
let id_ok = spair("concrete", S5);
#[rustfmt::skip]
let toks = [
ExprStart(ExprOp::Sum, S1),
// This expression is bound to an _abstract_ identifier,
// which will be expanded at a later time.
// Consequently,
// this expression is still dangling.
BindIdentAbstract(id_meta),
// Since the expression is still dangling,
// attempting to close it will produce an error.
ExprEnd(S3),
// RECOVERY: Since an attempt at identification has been made,
// we shouldn't expect that another attempt will be made.
// The sensible thing to do is to move on to try to find other
// errors,
// leaving the expression alone and unreachable.
ExprStart(ExprOp::Sum, S4),
// This is intended to demonstrate that we can continue on to the
// next expression despite the prior error.
BindIdent(id_ok),
ExprEnd(S6),
];
let mut sut = parse_as_pkg_body(toks);
assert_eq!(
#[rustfmt::skip]
vec![
Ok(Parsed::Incomplete), // PkgStart
Ok(Parsed::Incomplete), // ExprStart
// This provides an _abstract_ identifier,
// which is not permitted in this context.
Err(ParseError::StateError(AsgError::InvalidAbstractBindContext(
id_meta,
Some(S1), // Pkg
))),
// RECOVERY: Ignore the bind and move to close.
// The above identifier was rejected and so we are still dangling.
Err(ParseError::StateError(AsgError::DanglingExpr(
S1.merge(S3).unwrap()
))),
// RECOVERY: This observes that we're able to continue parsing
// the package after the above identification problem.
Ok(Parsed::Incomplete), // ExprStart
Ok(Parsed::Incomplete), // BindIdent (ok)
Ok(Parsed::Incomplete), // ExprEnd
Ok(Parsed::Incomplete), // PkgEnd
],
sut.by_ref().collect::<Vec<_>>(),
);
let _ = sut.finalize().unwrap();
}