Mike Gerwitz
bfe46be5bb
This begins to integrate the isolated AttrParser. The next step will be integrating it into the larger XIRT parser. There's been considerable delay in getting this committed, because I went through quite the struggle with myself trying to determine what balance I want to strike between Rust's type system; convenience with parser combinators; iterators; and various other abstractions. I ended up being confounded by trying to maintain the current XmloReader abstraction, which is fundamentally incompatible with the way the new parsing system works (streaming iterators that do not collect or perform heap allocations). There'll be more information on this to come, but there are certain things that will be changing. There are a couple problems highlighted by this commit (not in code, but conceptually): 1. Introducing Option here for the TokenParserState doesn't feel right, in the sense that the abstraction is inappropriate. We should perhaps introduce a new variant Parsed::Done or something to indicate intent, rather than leaving the reader to have to read about what None actually means. 2. This turns Parsed into more of a statement influencing control flow/logic, and so should be encapsulated, with an external equivalent of Parsed that omits variants that ought to remain encapsulated. 3. TokenStreamState is true, but these really are the actual parsers; TokenStreamParser is more of a coordinator, and helps to abstract away some of the common logic so lower-level parsers do not have to worry about it. But calling it TokenStreamState is both a bit confusing and is an understatement---it _does_ hold the state, but it also holds the current parsing stack in its variants. Another thing that is not yet entirely clear is whether this AttrParser ought to care about detection of duplicate attributes, or if that should be done in a separate parser, perhaps even at the XIR level. The same can be said for checking for balanced tags. By pushing it to TokenStream in XIR, we would get a guaranteed check regardless of what parsers are used, which is attractive because it reduces the (almost certain-to-otherwise-occur) risk that individual parsers will not sufficiently check for semantically valid XML. But it does _potentially_ match error recovery more complicated. But at the same time, perhaps more specific parsers ought not care about recovery at that level. Anyway, point being, more to come, but I am disappointed how much time I'm spending considering parsing, given that there are so many things I need to move onto. I just want this done right and in a way that feels like it's working well with Rust while it's all in working memory, otherwise it's going to be a significant effort to get back into. DEV-11268 |
||
---|---|---|
.. | ||
benches | ||
build-aux | ||
src | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
Makefile.am | ||
README.md | ||
autogen.sh | ||
bootstrap | ||
configure.ac | ||
rustfmt.toml |
README.md
TAME in Rust (TAMER)
TAME was written to help tame the complexity of developing comparative insurance rating systems. This project aims to tame the complexity and performance issues of TAME itself. TAMER is therefore more tame than TAME.
TAME was originally written in XSLT. For more information about the
project, see the parent README.md
.
Building
To bootstrap from the source repository, run ./bootstrap
.
To configure the build for your system, run ./configure
. To build, run
make
. To run tests, run make check
.
You may also invoke cargo
directly, which make
will do for you using
options provided to configure
.
Note that the default development build results in terrible runtime performance! See [#Build Flags][] below for instructions on how to generate a release binary.
Build Flags
The environment variable CARGO_BUILD_FLAGS
can be used to provide
additional arguments to cargo build
when invoked via make
. This can be
provided optionally during configure
and can be overridden when invoking
make
. For example:
# release build
$ ./configure && make CARGO_BUILD_FLAGS=--release
$ ./configure CARGO_BUILD_FLAGS=--release && make
# dev build
$ ./configure && make
$ ./configure CARGO_BUILD_FLAGS=--release && make CARGO_BUILD_FLAGS=
Hacking
This section contains advice for those developing TAMER.
Running Tests
Developers should be using test-driven development (TDD). make check
will
run all necessary tests.
Code Format
Rust provides rustfmt
that can automatically format code for you. This
project mandates its use and therefore eliminates personal preference in
code style (for better or worse).
Formatting checks are run during make check
and, on failure, will output
the diff that would be applied if you ran make fmt
(or make fix
); this
will run cargo fmt
for you (and will use the binaries configured via
configure
).
Since developers should be doing test-driven development (TDD) and therefore
should be running make check
frequently, the hope is that frequent
feedback on formatting issues will allow developers to quickly adjust their
habits to avoid triggering formatting errors at all.
If you want to automatically fix formatting errors and then run tests:
$ make fmt check
Benchmarking
Benchmarks serve two purposes: external integration tests (which are subject
to module visibility constraints) and actual benchmarking. To run
benchmarks, invoke make bench
.
Note that link-time optimizations (LTO) are performed on the binary for benchmarking so that its performance reflects release builds that will be used in production.
The configure
script will automatically detect whether the test
feature
is unstable (as it was as of the time of writing) and, if so, will
automatically fall back to invoking nightly (by running cargo +nightly bench
).
If you do not have nightly, run you install it via rustup install nightly
.