Mike Gerwitz
be81878dd7
Also known as metavariables or template parameters. This is a bit of a tortured excursion, trying to figure out how I want to best represent this. I have a number of pages of hand-written notes that I'd like to distill over time, but the rendered graph ontology (via `asg-ontviz`) demonstrates the broad idea. `AirTpl::TplApply` highlights some remaining questions. What I had _wanted_ to do is to separate the concepts of application and expansion, and support partial application and such. But it's going to be too much work for now, when it isn't needed---partial application can be worked around by simply creating new templates and duplicating params, as we do today, although that sucks and is a maintenance issue. But I'd rather address that head-on in the future. So it's looking like Option B is going to be the approach for now, with templates being closed (as in, no free metavariables) and expanded at the same time. This simplifies the parser and error conditions significantly and makes it easier to utilize anonymous templates, since it'll still be the active context. My intent is to get at least the graph construction sorted out---not the actual expansion and binding yet---enough that I can use templates to represent parts of NIR that do not have proper graph representations or desugaring yet, so that I can spit them back out again in the `xmli` file and incrementally handle them. That was an option I had considered some months ago, but didn't want to entertain it at the time because I wasn't sure what doing so would look like; while it was an attractive approach since it pushes existing primitives into the template system (something I've wanted to do for years), I didn't want to potentially tank performance or compromise the design for it after I had spent so much effort on all of this so far. But my efforts have yielded a system that significantly exceeds my initial performance expectations, with a decent abstractions, and so this seems viable. DEV-13708 |
||
---|---|---|
bin | ||
build-aux | ||
core | ||
design/tpl | ||
doc | ||
progtest | ||
rater | ||
src | ||
tamer | ||
test | ||
tools | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
.rev-xmle | ||
.rev-xmlo | ||
COPYING | ||
COPYING.FDL | ||
HACKING | ||
Makefile.am | ||
README.md | ||
RELEASES.md | ||
VERSION.in | ||
bootstrap | ||
c1map.xsd | ||
configure.ac | ||
package-lock.json |
README.md
TAME
TAME is The Algebraic Metalanguage, a programming language and system of tools designed to aid in the development, understanding, and maintenance of systems performing numerous calculations on a complex graph of dependencies, conditions, and a large number of inputs.
This system was developed at Ryan Specialty Group (formerly LoVullo Associates) to handle the complexity of comparative insurance rating systems. It is a domain-specific language (DSL) that itself encourages, through the use of templates, the creation of sub-DSLs. TAME itself is at heart a calculator—processing only numerical input and output—driven by quantifiers as predicates. Calculations and quantifiers are written declaratively without concern for order of execution.
The system has powerful dependency resolution and data flow capabilities.
TAME consists of a macro processor (implementing a metalanguage), numerous compilers for various targets (JavaScript, HTML documentation and debugging environment, LaTeX, and others), linkers, and supporting tools. The input grammar is XML, and the majority of the project (including the macro processor, compilers, and linkers) is written in a combination of XSLT and Rust.
TAMER
Due to performance requirements, this project is currently being reimplemented in Rust. That project can be found in the tamer/ directory.
Documentation
Compiled documentation for the latest release is available via our GitLab mirror, which uses the same build pipeline as we do on our internal GitLab instance. Available formats are:
Getting Started
To get started, make sure Saxon version 9 or later is available and its path
set as SAXON_CP
; that the path to hoxsl is set via HOXSL
; and then run
the bootstrap
script:
$ export SAXON_CP=/path/to/saxon9he.jar
$ export HOXSL=/path/to/hoxsl/root
$ ./boostrap
Running Test Cases
To run the test cases, invoke make check
(or its alias, make test
).
Testing Core Features
In order to run tests located at core/test/core/**
, a supporting environment
is required. (e.g. mega rater). Inside a supporting rater, either check out a
submodule containing the core tests, or temporarily add them into the
submodule.
Build the core test suite summary page using:
$ make rater/core/test/core/suite.html
Visit the summary page in a web browser and click the Calculate Premium button. If all test cases pass, it will yield a value of $1.
Hacking
Information for TAME developers can be found in the file HACKING
.
License
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.