Mike Gerwitz
adc45d90df
This is the first parser generator for the parsing framework. I've been waiting quite a while to do this because I wanted to be sure that I understood how I intended to write the attribute parsers manually. Now that I'm about to start parsing source XML files, it is necessary to have a parser generator. Typically one thinks of a parser generator as a separate program that generates code for some language, but that is not always the case---that represents a lack of expressiveness in the language itself (e.g. C). Here, I simply use Rust's macro system, which should be a concept familiar to someone coming from a language like Lisp. This also resolves where I stand on parser combinators with respect to this abstraction: they both accomplish the exact same thing (composition of smaller parsers), but this abstraction doesn't do so in the typical functional way. But the end result is the same. The parser generated by this abstraction will be optimized an inlined in the same manner as the hand-written parsers. Since they'll be tightly coupled with an element parser (which too will have a parser generator), I expect that most attribute parsers will simply be inlined; they exist as separate parsers conceptually, for the same reason that you'd use parser combinators. It's worth mentioning that this awkward reliance on dead state for a lookahead token to determine when aggregation is complete rubs me the wrong way, but resolving it would involve reintroducing the XIR AttrEnd that I had previously removed. I'll keep fighting with myself on this, but I want to get a bit further before I determine if it's worth the tradeoff of reintroducing (more complex IR but simplified parsing). DEV-7145 |
||
---|---|---|
.. | ||
benches | ||
build-aux | ||
src | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
Makefile.am | ||
README.md | ||
autogen.sh | ||
bootstrap | ||
configure.ac | ||
rustfmt.toml |
README.md
TAME in Rust (TAMER)
TAME was written to help tame the complexity of developing comparative insurance rating systems. This project aims to tame the complexity and performance issues of TAME itself. TAMER is therefore more tame than TAME.
TAME was originally written in XSLT. For more information about the
project, see the parent README.md
.
Building
To bootstrap from the source repository, run ./bootstrap
.
To configure the build for your system, run ./configure
. To build, run
make
. To run tests, run make check
.
You may also invoke cargo
directly, which make
will do for you using
options provided to configure
.
Note that the default development build results in terrible runtime performance! See [#Build Flags][] below for instructions on how to generate a release binary.
Build Flags
The environment variable CARGO_BUILD_FLAGS
can be used to provide
additional arguments to cargo build
when invoked via make
. This can be
provided optionally during configure
and can be overridden when invoking
make
. For example:
# release build
$ ./configure && make CARGO_BUILD_FLAGS=--release
$ ./configure CARGO_BUILD_FLAGS=--release && make
# dev build
$ ./configure && make
$ ./configure CARGO_BUILD_FLAGS=--release && make CARGO_BUILD_FLAGS=
Hacking
This section contains advice for those developing TAMER.
Running Tests
Developers should be using test-driven development (TDD). make check
will
run all necessary tests.
Code Format
Rust provides rustfmt
that can automatically format code for you. This
project mandates its use and therefore eliminates personal preference in
code style (for better or worse).
Formatting checks are run during make check
and, on failure, will output
the diff that would be applied if you ran make fmt
(or make fix
); this
will run cargo fmt
for you (and will use the binaries configured via
configure
).
Since developers should be doing test-driven development (TDD) and therefore
should be running make check
frequently, the hope is that frequent
feedback on formatting issues will allow developers to quickly adjust their
habits to avoid triggering formatting errors at all.
If you want to automatically fix formatting errors and then run tests:
$ make fmt check
Benchmarking
Benchmarks serve two purposes: external integration tests (which are subject
to module visibility constraints) and actual benchmarking. To run
benchmarks, invoke make bench
.
Note that link-time optimizations (LTO) are performed on the binary for benchmarking so that its performance reflects release builds that will be used in production.
The configure
script will automatically detect whether the test
feature
is unstable (as it was as of the time of writing) and, if so, will
automatically fall back to invoking nightly (by running cargo +nightly bench
).
If you do not have nightly, run you install it via rustup install nightly
.