tame/tamer
Mike Gerwitz 6bc872eb38 tamer: xir::parse::ele: Generate superstate
And here's the thing that I've been dreading, partly because of the
`macro_rules` issues involved.  But, it's not too terrible.

This module was already large and complex, and this just adds to it---it's
in need of refactoring, but I want to be sure it's fully working and capable
of handling NIR before I go spending time refactoring only to undo it.

_This does not yet use trampolining in place of the call stack._  That'll
come next; I just wanted to get the macro updated, the superstate generated,
and tests passing.  This does convert into the
superstate (`ParseState::Super`), but then converts back to the original
`ParseState` for BC with the existing composition-based delegation.  That
will go away and will then use the equivalent of CPS, using the
superstate+`Parser` as a trampoline.  This will require an explicit stack
via `Context`, like XIRF.  And it will allow for tail calls, with respect to
parser delegation, if I decide it's worth doing.

The root problem is that source XML requires recursive parsing (for
expressions and statements like `<section>`), which results in recursive
data structures (`ParseState` enum variants).  Resolving this with boxing is
not appropriate, because that puts heap indirection in an extremely hot code
path, and may also inhibit the aggressive optimizations that I need Rust to
perform to optimize away the majority of the lowering pipeline.

Once this is sorted out, this should be the last big thing for the
parser.  This unfortunately has been a nagging and looming issue for months,
that I was hoping to avoid, and in retrospect that was naive.

DEV-7145
2022-08-08 15:23:55 -04:00
..
benches tamer: Xirf::Text refinement 2022-08-01 15:01:37 -04:00
build-aux Copyright year update 2022 2022-05-03 14:14:29 -04:00
src tamer: xir::parse::ele: Generate superstate 2022-08-08 15:23:55 -04:00
.gitignore TAMER: Initial commit 2019-11-18 14:05:47 -05:00
Cargo.lock tamer: Cargo.toml: Remove lazy_static 2022-06-24 14:18:04 -04:00
Cargo.toml tamer: New parser-trace-stderr feature flag 2022-07-21 22:10:08 -04:00
Makefile.am Copyright year update 2022 2022-05-03 14:14:29 -04:00
README.md Copyright year update 2022 2022-05-03 14:14:29 -04:00
autogen.sh Copyright year update 2022 2022-05-03 14:14:29 -04:00
bootstrap Copyright year update 2022 2022-05-03 14:14:29 -04:00
configure.ac Copyright year update 2022 2022-05-03 14:14:29 -04:00
rustfmt.toml tamer/rustfmt (max_width): Set to 80 2019-11-27 09:15:15 -05:00

README.md

TAME in Rust (TAMER)

TAME was written to help tame the complexity of developing comparative insurance rating systems. This project aims to tame the complexity and performance issues of TAME itself. TAMER is therefore more tame than TAME.

TAME was originally written in XSLT. For more information about the project, see the parent README.md.

Building

To bootstrap from the source repository, run ./bootstrap.

To configure the build for your system, run ./configure. To build, run make. To run tests, run make check.

You may also invoke cargo directly, which make will do for you using options provided to configure.

Note that the default development build results in terrible runtime performance! See [#Build Flags][] below for instructions on how to generate a release binary.

Build Flags

The environment variable CARGO_BUILD_FLAGS can be used to provide additional arguments to cargo build when invoked via make. This can be provided optionally during configure and can be overridden when invoking make. For example:

# release build
$ ./configure && make CARGO_BUILD_FLAGS=--release
$ ./configure CARGO_BUILD_FLAGS=--release && make

# dev build
$ ./configure && make
$ ./configure CARGO_BUILD_FLAGS=--release && make CARGO_BUILD_FLAGS=

Hacking

This section contains advice for those developing TAMER.

Running Tests

Developers should be using test-driven development (TDD). make check will run all necessary tests.

Code Format

Rust provides rustfmt that can automatically format code for you. This project mandates its use and therefore eliminates personal preference in code style (for better or worse).

Formatting checks are run during make check and, on failure, will output the diff that would be applied if you ran make fmt (or make fix); this will run cargo fmt for you (and will use the binaries configured via configure).

Since developers should be doing test-driven development (TDD) and therefore should be running make check frequently, the hope is that frequent feedback on formatting issues will allow developers to quickly adjust their habits to avoid triggering formatting errors at all.

If you want to automatically fix formatting errors and then run tests:

$ make fmt check

Benchmarking

Benchmarks serve two purposes: external integration tests (which are subject to module visibility constraints) and actual benchmarking. To run benchmarks, invoke make bench.

Note that link-time optimizations (LTO) are performed on the binary for benchmarking so that its performance reflects release builds that will be used in production.

The configure script will automatically detect whether the test feature is unstable (as it was as of the time of writing) and, if so, will automatically fall back to invoking nightly (by running cargo +nightly bench).

If you do not have nightly, run you install it via rustup install nightly.