tame/tamer/src/sym.rs

910 lines
32 KiB
Rust
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

// String internment
//
// Copyright (C) 2014-2020 Ryan Specialty Group, LLC.
//
// This file is part of TAME.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//! String internment system.
//!
//! Interned strings are represented by [`Symbol`],
//! created by an [`Interner`]:
//~
//! - [`ArenaInterner`] - Intern pool backed by an [arena][] for fast
//! and stable allocation.
//! - [`DefaultInterner`] - The currently recommended intern pool
//! configuration for symbol interning.
//! - [`FxArenaInterner`] - Intern pool backed by an [arena][] using the
//! [Fx Hash][fxhash] hashing algorithm.
//!
//! Interners return symbols by reference which allows for `O(1)` comparison
//! by pointer.
//!
//! [arena]: bumpalo
//!
//! ```
//! use tamer::sym::{Interner, DefaultInterner, Symbol, SymbolIndex};
//!
//! // Inputs to be interned
//! let a = "foo";
//! let b = &"foo".to_string();
//! let c = "foobar";
//! let d = &c[0..3];
//!
//! // Interners employ interior mutability and so do not need to be
//! // declared `mut`
//! let interner = DefaultInterner::new();
//!
//! let (ia, ib, ic, id) = (
//! interner.intern(a),
//! interner.intern(b),
//! interner.intern(c),
//! interner.intern(d),
//! );
//!
//! assert_eq!(ia, ib);
//! assert_eq!(ia, id);
//! assert_eq!(ib, id);
//! assert_ne!(ia, ic);
//!
//! // All interns can be cloned and clones are eq
//! assert_eq!(*ia, ia.clone());
//!
//! // Only "foo" and "foobar" are interned
//! assert_eq!(2, interner.len());
//! assert!(interner.contains("foo"));
//! assert!(interner.contains("foobar"));
//! assert!(!interner.contains("something else"));
//!
//! // Each symbol has an associated, densely-packed integer value
//! // that can be used for indexing
//! assert_eq!(SymbolIndex::from_u32(1), ia.index());
//! assert_eq!(SymbolIndex::from_u32(1), ib.index());
//! assert_eq!(SymbolIndex::from_u32(2), ic.index());
//! assert_eq!(SymbolIndex::from_u32(1), id.index());
//!
//! // Symbols can also be looked up by index.
//! assert_eq!(Some(ia), interner.index_lookup(ia.index()));
//! ```
//!
//! What Is String Interning?
//! =========================
//! _[String interning][]_ is a process by which a single copy of a string
//! is stored immutably in memory as part of a _pool_.
//! When the same string is later encountered,
//! a reference to the string in the pool is used rather than allocating a
//! new string.
//! Interned strings are typically referred to as "symbols" or "atoms".
//!
//! String comparison then amounts to comparing pointers (`O(1)`)
//! rather than having to scan the string (`O(n)`).
//! There is, however, a hashing cost of interning strings,
//! as well as looking up strings in the intern pool.
//!
//! [string interning]: https://en.wikipedia.org/wiki/String_interning
//!
//!
//! Internment Mechanism
//! ====================
//! The current [`DefaultInterner`] is [`FxArenaInterner`],
//! which is an [arena][]-allocated intern pool mapped by the
//! [Fx Hash][fxhash] hash function:
//!
//! 1. Strings are compared against the existing intern pool using a
//! [`HashMap`].
//! 2. If a string has not yet been interned:
//! - The string is copied into the arena-backed pool;
//! - A new [`Symbol`] is allocated adjacent to it in the arena holding
//! a string slice referencing the arena-allocated string; and
//! - The symbol is stored as the value in the [`HashMap`] for that key.
//! 3. Otherwise, a reference to the existing [`Symbol`] is returned.
//!
//! Since the arena provides a stable location in memory,
//! and all symbols are immutable,
//! [`ArenaInterner`] is able to safely return any number of references to
//! a single [`Symbol`],
//! bound to the lifetime of the arena itself.
//! Since the [`Symbol`] contains the string slice,
//! it also acts as a [smart pointer] for the interned string itself,
//! allowing [`Symbol`] to be used in any context where `&str` is
//! expected.
//! Dropping a [`Symbol`] does _not_ affect the underlying arena-allocated
//! data.
//!
//! [smart pointer]: https://doc.rust-lang.org/book/ch15-00-smart-pointers.html
//!
//! Each symbol also has an associated integer index value
//! (see [`Symbol::index`]),
//! which provides a dense range of values suitable for use in vectors
//! as an alternative to [`HashMap`] for mapping symbol data.
//! A [`SymbolIndex`] can be mapped back into its associated [`Symbol`]
//! using [`Interner::index_lookup`].
//!
//! Since a reference to the same [`Symbol`] is returned for each
//! [`Interner::intern`] and [`Interner::intern_soft`] call,
//! symbols can be compared by pointer in `O(1)` time.
//! Symbols also implement [`Copy`],
//! and will still compare equal to other symbols referencing the same
//! interned value by comparing the underlying string slice pointers.
//!
//! This implementation was heavily motivated by [Rustc's own internment
//! system][rustc-intern],
//! but differs in significant ways:
//!
//! - This implementation stores string references in [`Symbol`] rather
//! than relying on a global singleton [`Interner`];
//! - Consequently, associates the lifetime of interned strings with that
//! of the underlying arena rather than casting to `&'static`;
//! - Retrieves symbol values by pointer reference without requiring use
//! of [`Interner`] or a locking mechanism; and
//! - Stores [`Symbol`] objects in the arena rather than within a vector
//! indexed by [`SymbolIndex`].
//!
//!
//! Name Mangling
//! =============
//! Interners do not perform [name mangling][].
//! For future consideration,
//! see [RFC 2603][rfc-2603] and the [Itanium ABI][itanium-abi].
//!
//! [name mangling]: https://en.wikipedia.org/wiki/Name_mangling
//! [rfc-2603]: https://rust-lang.github.io/rfcs/2603-symbol-name-mangling-v2.html
//! [itanium-abi]: http://refspecs.linuxbase.org/cxxabi-1.86.html#mangling
//!
//!
//! Related Work and Further Reading
//! ================================
//! String interning is often tightly coupled with symbols (in the generic
//! sense),
//! sometimes called atoms.
//! Symbols can often be either interned,
//! and therefore compared for equivalency,
//! or _uninterned_,
//! which makes them unique even to symbols of the same name.
//! Interning may also be done automatically by a language for performance.
//! Languages listed below that allow for explicit interning may also
//! perform automatic interning as well
//! (for example, `'symbol` in Lisp and `lowercase_vars` as atoms in
//! Erlang).
//!
//! | Language | Interned | Uninterned |
//! | -------- | -------- | ---------- |
//! | [Erlang][] | [`list_to_atom`][edt] | _(None)_ |
//! | [GNU Emacs Lisp][] | [`intern`][es], [`intern-soft`][es] | [`make-symbol`][es], [`gensym`][es] |
//! | [GNU Guile][] | [`string->symbol`][gs], [`gensym`][gs] | [`make-symbol`][gu] |
//! | [JavaScript][] | [`Symbol.for`][js] | [`Symbol`][js] |
//! | [Java][] | [`intern`][jvs] | _(None)_ |
//! | [Lua][] | _(Automatic for string performance)_ | _(None)_ |
//! | [MIT/GNU Scheme][] | [`intern`][ms], [`intern-soft`][ms], [`string->symbol`][ms] | [`string->uninterned-symbol`][ms], [`generate-uninterned-symbol`][ms] |
//! | [PHP][] | _(Automatic for string [performance][pp])_ | _(None)_ |
//! | [Python][] | [`sys.intern`][pys] | _(None)_ |
//! | [R6RS Scheme][] | [`string->symbol`][r6s] | _(None)_ |
//! | [Racket][] | [`string->symbol`][rs], [`string->unreadable-symbol`][rs] | [`string->uninterned-symbol`][rs], [`gensym`][rs] |
//!
//! [gnu guile]: https://www.gnu.org/software/guile/
//! [gs]: https://www.gnu.org/software/guile/manual/html_node/Symbol-Primitives.html#Symbol-Primitives
//! [gu]: https://www.gnu.org/software/guile/manual/html_node/Symbol-Uninterned.html#Symbol-Uninterned
//! [gnu emacs lisp]: https://www.gnu.org/software/emacs/
//! [es]: https://www.gnu.org/software/emacs/manual/html_node/elisp/Creating-Symbols.html
//! [racket]: https://racket-lang.org/
//! [rs]: https://docs.racket-lang.org/reference/symbols.html
//! [r6rs scheme]: http://www.r6rs.org/
//! [r6s]: http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html
//! [mit/gnu scheme]: https://www.gnu.org/software/mit-scheme/
//! [ms]: https://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/Symbols.html
//! [javascript]: https://developer.mozilla.org/en-US/docs/Web/JavaScript
//! [js]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
//! [java]: http://openjdk.java.net/
//! [jvs]: https://cr.openjdk.java.net/~iris/se/12/latestSpec/api/java.base/java/lang/String.html#intern()
//! [php]: https://www.php.net/
//! [pp]: https://wiki.php.net/rfc/performanceimprovements
//! [erlang]: https://erlang.org/
//! [edt]: http://erlang.org/doc/reference_manual/data_types.html
//! [lua]: https://www.lua.org/
//! [python]: https://www.python.org/
//! [pys]: https://docs.python.org/3/library/sys.html
//!
//! More information:
//! - Wikipedia entry on [string interning][].
//! - The [flyweight pattern][] in object-oriented programming is a type
//! of interning.
//! - [RFC 1845][rfc-1845] gives an example of string interning using
//! `Rc<str>`.
//! - Emacs directly exposes the intern pool at runtime as
//! [`obarray`][es].
//! - [`string-cache`][rust-string-cache] is a string interning system
//! for Rust developed by Mozilla for Servo.
//! - [`string-interner`][rust-string-interner] is another string
//! interning library for Rust.
//! - [Rustc interns strings as `Symbol`s][rustc-intern] using an
//! [arena allocator][rustc-arena] and avoids `Rc` by representing
//! symbols as integer values and converting them to strings using a
//! global pool and unsafe rust to cast to a `static` slice.
//! - Rustc identifies symbols by integer value encapsulated within a
//! `Symbol`.
//! - Rustc's [`newtype_index!` macro][rustc-nt] uses
//! [`global::NonZeroProgSymSize`] so that [`Option`] uses no
//! additional space (see [pull request `53315`][rustc-nt-pr]).
//! - Differences between TAMER and Rustc's implementations are outlined
//! above.
//!
//! [flyweight pattern]: https://en.wikipedia.org/wiki/Flyweight_pattern
//! [rust-string-cache]: https://github.com/servo/string-cache
//! [rust-string-interner]: https://github.com/robbepop/string-interner
//! [rfc-1845]: https://rust-lang.github.io/rfcs/1845-shared-from-slice.html
//! [rustc-intern]: https://doc.rust-lang.org/nightly/nightly-rustc/syntax/ast/struct.Name.html
//! [rustc-arena]: https://doc.rust-lang.org/nightly/nightly-rustc/arena/index.html
//! [rustc-nt]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_index/macro.newtype_index.html
//! [rustc-nt-pr]: https://github.com/rust-lang/rust/pull/53315
//!
//! The hash function chosen for this module is [Fx Hash][fxhash].
//!
//! - Rustc previously used the [Fowler-Noll-Vo (FNV)][fnv] hash
//! function,
//! but [now uses Fx Hash][rustc-fx].
//! This was extracted into the [`fxhash`][fxhash] crate,
//! which is used by TAMER.
//! - TAMER originally used FNV,
//! but benchmarks showed that Fx Hash was more performant.
//! - Benchmarks for other hash functions,
//! including FNV,
//! can be found at the [`hash-rs`][hash-rs] project.
//!
//! [fnv]: https://doc.servo.org/fnv/
//! [rustc-fx]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_data_structures/fx/index.html
//! [hash-rs]: https://github.com/Gankra/hash-rs
use crate::global;
use bumpalo::Bump;
use fxhash::FxBuildHasher;
use std::cell::RefCell;
use std::collections::HashMap;
use std::convert::TryInto;
use std::fmt;
use std::hash::BuildHasher;
use std::ops::Deref;
/// Unique symbol identifier.
///
/// _Do not construct this value yourself;_
/// use an [`Interner`].
///
/// This newtype helps to prevent other indexes from being used where a
/// symbol index is expected.
/// Note, however, that it provides no defense against mixing symbol indexes
/// between multiple [`Interner`]s.
///
/// The index `0` is never valid because of [`global::NonZeroProgSymSize`],
/// which allows us to have `Option<SymbolIndex>` at no space cost.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct SymbolIndex(global::NonZeroProgSymSize);
impl SymbolIndex {
/// Construct index from a non-zero `u32` value.
///
/// Panics
/// ------
/// Will panic if `n == 0`.
pub fn from_u32(n: u32) -> SymbolIndex {
SymbolIndex(global::NonZeroProgSymSize::new(n).unwrap())
}
/// Construct index from an unchecked non-zero `u32` value.
///
/// This does not verify that `n > 0` and so must only be used in
/// contexts where this invariant is guaranteed to hold.
/// Unlike [`from_u32`](SymbolIndex::from_u32),
/// this never panics.
unsafe fn from_u32_unchecked(n: u32) -> SymbolIndex {
SymbolIndex(global::NonZeroProgSymSize::new_unchecked(n))
}
}
impl From<SymbolIndex> for usize {
fn from(value: SymbolIndex) -> usize {
value.0.get() as usize
}
}
impl<'i> From<&Symbol<'i>> for SymbolIndex {
fn from(sym: &Symbol<'i>) -> Self {
sym.index()
}
}
/// Interned string.
///
/// A reference to this symbol is returned each time the same string is
/// interned with the same [`Interner`];
/// as such,
/// symbols can be compared for equality by pointer;
/// the underlying symbol id need not be used.
///
/// Each symbol is identified by a unique integer
/// (see [`index`](Symbol::index)).
/// The use of integers creates a more dense range of values than pointers,
/// which allows callers to use a plain [`Vec`] as a map instead of
/// something far more expensive like
/// [`HashSet`](std::collections::HashSet);
/// this is especially beneficial for portions of the system that make
/// use of nearly all interned symbols,
/// like the ASG.
/// A [`SymbolIndex`] can be mapped back into its [`Symbol`] by calling
/// [`Interner::index_lookup`] on the same interner that produced it.
///
/// The symbol also stores a string slice referencing the interned string
/// itself,
/// whose lifetime is that of the [`Interner`]'s underlying data store.
/// Dereferencing the symbol will expose the underlying slice.
#[derive(Copy, Clone, Debug)]
pub struct Symbol<'i> {
index: SymbolIndex,
str: &'i str,
}
impl<'i> Symbol<'i> {
/// Construct a new interned value.
///
/// _This must only be done by an [`Interner`]._
/// As such,
/// this function is not public.
///
/// For test builds (when `cfg(test)`),
/// `new_dummy` is available to create symbols for tests.
#[inline]
fn new(index: SymbolIndex, str: &'i str) -> Symbol<'i> {
Self { index, str }
}
/// Retrieve unique symbol index.
///
/// This is a densely-packed identifier that can be used as an index for
/// mapping.
/// See [`SymbolIndex`] for more information.
#[inline]
pub fn index(&self) -> SymbolIndex {
self.index
}
/// Construct a new interned value _for testing_.
///
/// This is a public version of [`Symbol::new`] available for test
/// builds.
/// This separate name is meant to strongly imply that you should not be
/// doing this otherwise.
///
/// See also `dummy_symbol!`.
#[cfg(test)]
#[inline(always)]
pub fn new_dummy(index: SymbolIndex, str: &'i str) -> Symbol<'i> {
Self::new(index, str)
}
}
impl<'i> PartialEq for Symbol<'i> {
fn eq(&self, other: &Self) -> bool {
std::ptr::eq(self as *const _, other as *const _)
|| std::ptr::eq(self.str.as_ptr(), other.str.as_ptr())
}
}
impl<'i> Eq for Symbol<'i> {}
impl<'i> Deref for Symbol<'i> {
type Target = str;
/// Dereference to interned string slice.
///
/// This allows for symbols to be used where strings are expected.
#[inline]
fn deref(&self) -> &str {
self.str
}
}
impl<'i> fmt::Display for Symbol<'i> {
/// Display name of underlying string.
///
/// Since symbols contain pointers to their interned slices,
/// we effectively get this for free.
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.str)
}
}
/// Create, store, compare, and retrieve [`Symbol`] values.
///
/// Interners accept string slices and produce values of type [`Symbol`].
/// A reference to the same [`Symbol`] will always be returned for a given
/// string,
/// allowing symbols to be compared for equality cheaply by comparing
/// pointers.
/// Symbol locations in memory are fixed for the lifetime of the interner.
///
/// If you care whether a value has been interned yet or not,
/// see [`intern_soft`][Interner::intern_soft`] and
/// [`contains`](Interner::contains).
///
/// See the [module-level documentation](self) for an example.
pub trait Interner<'i> {
/// Intern a string slice or return an existing [`Symbol`].
///
/// If the provided string has already been interned,
/// then a reference to the existing [`Symbol`] will be returned.
/// Otherwise,
/// the string will be interned and a new [`Symbol`] created.
///
/// The lifetime of the returned symbol is bound to the lifetime of the
/// underlying intern pool.
///
/// To retrieve an existing symbol _without_ interning,
/// see [`intern_soft`](Interner::intern_soft).
fn intern(&'i self, value: &str) -> &'i Symbol<'i>;
/// Retrieve an existing intern for the string slice `s`.
///
/// Unlike [`intern`](Interner::intern),
/// this will _not_ intern the string if it has not already been
/// interned.
fn intern_soft(&'i self, value: &str) -> Option<&'i Symbol<'i>>;
/// Determine whether the given value has already been interned.
fn contains(&self, value: &str) -> bool;
/// Number of interned strings.
///
/// This count will increase each time a unique string is interned.
/// It does not increase when a string is already interned.
fn len(&self) -> usize;
/// Look up a previously interned [`Symbol`] by its [`SymbolIndex`].
///
/// This will always return a [`Symbol`] as long as the provided `index`
/// represents a symbol interned with this interner.
/// If the index is not found,
/// the result is [`None`].
///
/// This method is most useful when storing [`Symbol`] is not possible
/// or desirable.
/// For example,
/// borrowed [`Symbol`] references require lifetimes,
/// whereas [`SymbolIndex`] is both owned _and_ [`Copy`].
/// [`SymbolIndex`] is also much smaller than [`Symbol`].
fn index_lookup(&'i self, index: SymbolIndex) -> Option<&'i Symbol<'i>>;
/// Intern an assumed-UTF8 slice of bytes or return an existing
/// [`Symbol`].
///
/// Safety
/// ======
/// This function is unsafe because it uses
/// [`std::str::from_utf8_unchecked`].
/// It is provided for convenience when interning from trusted binary
/// data
/// (such as [object files][]).
///
/// [object files]: crate::obj
unsafe fn intern_utf8_unchecked(&'i self, value: &[u8]) -> &'i Symbol<'i> {
self.intern(std::str::from_utf8_unchecked(value))
}
}
/// An interner backed by an [arena](bumpalo).
///
/// Since interns exist until the interner itself is freed,
/// an arena is a much more efficient and appropriate memory allocation
/// strategy.
/// This further provides a stable location in memory for symbol data.
///
/// For the recommended configuration,
/// see [`DefaultInterner`].
///
/// See the [module-level documentation](self) for examples and more
/// information on how to use this interner.
pub struct ArenaInterner<'i, S>
where
S: BuildHasher + Default,
{
/// String and [`Symbol`] storage.
arena: Bump,
/// Symbol references by index.
///
/// This vector enables looking up a [`Symbol`] using its
/// [`SymbolIndex`].
///
/// The first index must always be populated during initialization to
/// ensure that [`SymbolIndex`] will never be `0`.
indexes: RefCell<Vec<&'i Symbol<'i>>>,
/// Map of interned strings to their respective [`Symbol`].
///
/// Both strings and symbols are allocated within `arena`.
map: RefCell<HashMap<&'i str, &'i Symbol<'i>, S>>,
}
lazy_static! {
/// Dummy [`Symbol`] for use at index `0`.
///
/// A symbol must never have an index of `0`,
/// so this can be used as a placeholder.
/// The chosen [`SymbolIndex`] here does not matter since this will
/// never be referenced.
static ref DUMMY_SYM: Symbol<'static> =
Symbol::new(SymbolIndex::from_u32(1), "!BADSYMREF!");
}
impl<'i, S> ArenaInterner<'i, S>
where
S: BuildHasher + Default,
{
/// Initialize a new interner with no initial capacity.
///
/// Prefer [`with_capacity`](ArenaInterner::with_capacity) when possible.
#[inline]
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Initialize a new interner with an initial capacity for the
/// underlying [`HashMap`].
///
/// The given `capacity` has no affect on arena allocation.
/// Specifying initial capacity is important only for the map of strings
/// to symbols because it will reallocate and re-hash its contents
/// once capacity is exceeded.
/// See benchmarks.
///
/// If reallocation is a major concern,
/// a [consistent hashing algorithm][consistent] could be considered,
/// but the implementation will still incur the cost of copying
/// the [`HashMap`]'s contents to a new location in memory.
///
/// [consistent]: https://en.wikipedia.org/wiki/Consistent_hashing
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
let mut indexes = Vec::<&'i Symbol<'i>>::with_capacity(capacity);
// The first index is not used since SymbolIndex cannot be 0.
indexes.push(&DUMMY_SYM);
Self {
arena: Bump::new(),
indexes: RefCell::new(indexes),
map: RefCell::new(HashMap::with_capacity_and_hasher(
capacity,
Default::default(),
)),
}
}
}
impl<'i, S> Interner<'i> for ArenaInterner<'i, S>
where
S: BuildHasher + Default,
{
fn intern(&'i self, value: &str) -> &'i Symbol<'i> {
let mut map = self.map.borrow_mut();
if let Some(sym) = map.get(value) {
return sym;
}
let mut syms = self.indexes.borrow_mut();
let next_index: u32 = syms
.len()
.try_into()
.expect("internal error: SymbolIndex range exhausted");
// This is not actually unsafe because next_index is always >0
// from initialization.
debug_assert!(next_index != 0);
let id = unsafe { SymbolIndex::from_u32_unchecked(next_index) };
// Copy string slice into the arena.
let clone: &'i str = unsafe {
&*(std::str::from_utf8_unchecked(
self.arena.alloc_slice_clone(value.as_bytes()),
) as *const str)
};
// Symbols are also stored within the arena, adjacent to the
// string. This ensures that both have stable locations in memory.
let sym: &'i Symbol<'i> = self.arena.alloc(Symbol::new(id, clone));
map.insert(clone, sym);
syms.push(sym);
sym
}
#[inline]
fn intern_soft(&'i self, value: &str) -> Option<&'i Symbol<'i>> {
self.map.borrow().get(value).map(|sym| *sym)
}
#[inline]
fn contains(&self, value: &str) -> bool {
self.map.borrow().contains_key(value)
}
#[inline]
fn len(&self) -> usize {
self.map.borrow().len()
}
fn index_lookup(&'i self, index: SymbolIndex) -> Option<&'i Symbol<'i>> {
self.indexes
.borrow()
.get(index.0.get() as usize)
.map(|sym| *sym)
}
}
/// Interner using the [Fx Hash][fxhash] hashing function.
///
/// _This is currently the hash function used by [`DefaultInterner`]._
///
/// If denial of service is not a concern,
/// then this will outperform the default
/// [`DefaultHasher`](std::collections::hash_map::DefaultHasher)
/// (which uses SipHash at the time of writing).
///
/// See intern benchmarks for a comparison.
pub type FxArenaInterner<'i> = ArenaInterner<'i, FxBuildHasher>;
/// Recommended [`Interner`] and configuration.
///
/// The choice of this default relies on the assumption that
/// denial-of-service attacks against the hash function are not a
/// concern.
///
/// For more information on the hashing algorithm,
/// see [`FxArenaInterner`].
pub type DefaultInterner<'i> = FxArenaInterner<'i>;
/// Concisely define dummy symbols for testing.
#[cfg(test)]
macro_rules! symbol_dummy {
($id:expr, $name:expr) => {
Symbol::new_dummy(SymbolIndex::from_u32($id), $name);
};
}
#[cfg(test)]
mod test {
use super::*;
mod symbol {
use super::*;
/// Option<Symbol> should have no space cost.
#[test]
fn symbol_index_option_no_cost() {
use std::mem::size_of;
assert_eq!(
size_of::<Option<Symbol>>(),
size_of::<Symbol>(),
"Option<Symbol> should be the same size as Symbol"
);
}
#[test]
fn self_compares_eq() {
let sym = Symbol::new(SymbolIndex::from_u32(1), "str");
assert_eq!(&sym, &sym);
}
#[test]
fn copy_compares_equal() {
let sym = Symbol::new(SymbolIndex::from_u32(1), "str");
let cpy = sym;
assert_eq!(sym, cpy);
}
// Integer values are for convenience, not identity. They cannot be
// used as a unique identifier across different interners.
#[test]
fn same_index_different_slices_compare_unequal() {
let a = Symbol::new(SymbolIndex::from_u32(1), "a");
let b = Symbol::new(SymbolIndex::from_u32(1), "b");
assert_ne!(a, b);
}
// As mentioned above, ids are _not_ the identity of the symbol. If
// two values point to the same location in memory, they are assumed
// to have come from the same interner, and should therefore have
// the same index this should never happen unless symbols are
// being created without the use of interners, which is unsupported.
//
// This test is a cautionary tale.
#[test]
fn different_index_same_slices_compare_equal() {
let slice = "str";
let a = Symbol::new(SymbolIndex::from_u32(1), slice);
let b = Symbol::new(SymbolIndex::from_u32(2), slice);
assert_eq!(a, b);
}
#[test]
fn cloned_symbols_compare_equal() {
let sym = Symbol::new(SymbolIndex::from_u32(1), "foo");
assert_eq!(sym, sym.clone());
}
// &Symbol can be used where string slices are expected (this won't
// compile otherwise).
#[test]
fn ref_can_be_used_as_string_slice() {
let slice = "str";
let sym_slice: &str = &Symbol::new(SymbolIndex::from_u32(1), slice);
assert_eq!(slice, sym_slice);
}
// For use when we can guarantee proper ids.
#[test]
fn can_create_index_unchecked() {
assert_eq!(SymbolIndex::from_u32(1), unsafe {
SymbolIndex::from_u32_unchecked(1)
});
}
#[test]
fn can_retrieve_symbol_index() {
let index = SymbolIndex::from_u32(1);
assert_eq!(index, Symbol::new(index, "").index());
}
#[test]
fn displays_as_interned_value() {
let sym = Symbol::new(SymbolIndex::from_u32(1), "foo");
assert_eq!(format!("{}", sym), sym.str);
}
}
mod interner {
use super::*;
type Sut<'i> = DefaultInterner<'i>;
#[test]
fn recognizes_equal_strings() {
let a = "foo";
let b = a.to_string();
let c = "bar";
let d = c.to_string();
let sut = Sut::new();
let (ia, ib, ic, id) =
(sut.intern(a), sut.intern(&b), sut.intern(c), sut.intern(&d));
assert_eq!(ia, ib);
assert_eq!(&ia, &ib);
assert_eq!(*ia, *ib);
assert_eq!(ic, id);
assert_eq!(&ic, &id);
assert_eq!(*ic, *id);
assert_ne!(ia, ic);
assert_ne!(&ia, &ic);
assert_ne!(*ia, *ic);
}
#[test]
fn symbol_id_increases_with_each_new_intern() {
let sut = Sut::new();
// Remember that identifiers begin at 1
assert_eq!(
SymbolIndex::from_u32(1),
sut.intern("foo").index(),
"First index should be 1"
);
assert_eq!(
SymbolIndex::from_u32(1),
sut.intern("foo").index(),
"Index should not increment for already-interned symbols"
);
assert_eq!(
SymbolIndex::from_u32(2),
sut.intern("bar").index(),
"Index should increment for new symbols"
);
}
#[test]
fn length_increases_with_each_new_intern() {
let sut = Sut::new();
assert_eq!(0, sut.len(), "invalid empty len");
sut.intern("foo");
assert_eq!(1, sut.len(), "increment len");
// duplicate
sut.intern("foo");
assert_eq!(1, sut.len(), "do not increment len on duplicates");
sut.intern("bar");
assert_eq!(2, sut.len(), "increment len (2)");
}
#[test]
fn can_check_wither_string_is_interned() {
let sut = Sut::new();
assert!(!sut.contains("foo"), "recognize missing value");
sut.intern("foo");
assert!(sut.contains("foo"), "recognize interned value");
}
#[test]
fn intern_soft() {
let sut = Sut::new();
assert_eq!(None, sut.intern_soft("foo"));
let foo = sut.intern("foo");
assert_eq!(Some(foo), sut.intern_soft("foo"));
}
#[test]
fn new_with_capacity() {
let n = 512;
let sut = Sut::with_capacity(n);
// note that this is not publicly available
assert!(sut.map.borrow().capacity() >= n);
}
#[test]
fn intern_utf8_unchecked() {
let sut = Sut::new();
let a = sut.intern("foo");
let b = unsafe { sut.intern_utf8_unchecked(b"foo") };
assert_eq!(a, b);
}
#[test]
fn lookup_symbol_by_index() {
let sut = Sut::new();
// Symbol does not yet exist.
assert!(sut.index_lookup(SymbolIndex::from_u32(1)).is_none());
let sym = sut.intern("foo");
assert_eq!(Some(sym), sut.index_lookup(sym.index()));
assert_eq!(Some(sym), sut.index_lookup(sym.into()));
}
}
}