Mike Gerwitz
42b5007402
The XIRT parser was initially written for test cases, so that unit tests should assert more easily on generated token streams (XIR). While it was planned, it wasn't clear what the eventual needs would be, which were expected to differ. Indeed, loading everything into a generic tree representation in memory is not appropriate---we should prefer streaming and avoiding heap allocations when they’re not necessary, and we should parse into an IR rather than a generic format, which ensures that the data follow a proper grammar and are semantically valid. When parsing attributes in an isolated context became necessary for the aforementioned task, the state machine of the XIRT parser was modified to accommodate. The opposite approach should have been taken---instead of adding complexity and special cases to the parser, and from a complex parser extracting a simple one (an attribute parser), we should be composing the larger (full XIRT) parser from smaller ones (e.g. attribute, child elements). A combinator, when used in a functional sense, refers not to combinatory logic but to the composition of more complex systems from smaller ones. The changes made as part of this commit begin to work toward combinators, though it's not necessarily evident yet (to you, the reader) how that'll work, since the code for it hasn't yet been written; this is commit is simply getting my work thusfar introduced so I can do some light refactoring before continuing on it. TAMER does not aim to introduce a parser combinator framework in its usual sense---it favors, instead, striking a proper balance with Rust’s type system that permits the convenience of combinators only in situations where they are needed, to avoid having to write new parser boilerplate. Specifically: 1. Rust’s type system should be used as combinators, so that parsers are automatically constructed from the type definition. 2. Primitive parsers are written as explicit automata, not as primitive combinators. 3. Parsing should directly produce IRs as a lowering operation below XIRT, rather than producing XIRT itself. That is, target IRs should consume XIRT and produce parse themselves immediately, during streaming. In the future, if more combinators are needed, they will be added; maybe this will eventually evolve into a more generic parser combinator framework for TAME, but that is certainly a waste of time right now. And, to be honest, I’m hoping that won’t be necessary. |
||
---|---|---|
bin | ||
build-aux | ||
core | ||
design/tpl | ||
doc | ||
progtest | ||
rater | ||
src | ||
tamer | ||
test | ||
tools | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
.rev-xmle | ||
.rev-xmlo | ||
COPYING | ||
COPYING.FDL | ||
HACKING | ||
Makefile.am | ||
README.md | ||
RELEASES.md | ||
VERSION.in | ||
bootstrap | ||
c1map.xsd | ||
configure.ac | ||
package-lock.json |
README.md
TAME
TAME is The Algebraic Metalanguage, a programming language and system of tools designed to aid in the development, understanding, and maintenance of systems performing numerous calculations on a complex graph of dependencies, conditions, and a large number of inputs.
This system was developed at Ryan Specialty Group (formerly LoVullo Associates) to handle the complexity of comparative insurance rating systems. It is a domain-specific language (DSL) that itself encourages, through the use of templates, the creation of sub-DSLs. TAME itself is at heart a calculator—processing only numerical input and output—driven by quantifiers as predicates. Calculations and quantifiers are written declaratively without concern for order of execution.
The system has powerful dependency resolution and data flow capabilities.
TAME consists of a macro processor (implementing a metalanguage), numerous compilers for various targets (JavaScript, HTML documentation and debugging environment, LaTeX, and others), linkers, and supporting tools. The input grammar is XML, and the majority of the project (including the macro processor, compilers, and linkers) is written in a combination of XSLT and Rust.
TAMER
Due to performance requirements, this project is currently being reimplemented in Rust. That project can be found in the tamer/ directory.
Documentation
Compiled documentation for the latest release is available via our GitLab mirror, which uses the same build pipeline as we do on our internal GitLab instance. Available formats are:
Getting Started
To get started, make sure Saxon version 9 or later is available and its path
set as SAXON_CP
; that the path to hoxsl is set via HOXSL
; and then run
the bootstrap
script:
$ export SAXON_CP=/path/to/saxon9he.jar
$ export HOXSL=/path/to/hoxsl/root
$ ./boostrap
Running Test Cases
To run the test cases, invoke make check
(or its alias, make test
).
Testing Core Features
In order to run tests located at core/test/core/**
, a supporting environment
is required. (e.g. mega rater). Inside a supporting rater, either check out a
submodule containing the core tests, or temporarily add them into the
submodule.
Build the core test suite summary page using:
$ make rater/core/test/core/suite.html
Visit the summary page in a web browser and click the Calculate Premium button. If all test cases pass, it will yield a value of $1.
Hacking
Information for TAME developers can be found in the file HACKING
.
License
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.