Mike Gerwitz
40c941d348
This introduces a number of concepts together, again to demonstrate that they were derived. This introduces support for nested expressions, extending the previous work. It also supports error recovery for dangling expressions. The parser states are a mess; there is a lot of duplicate code here that needs refactoring, but I wanted to commit this first at a known-good state so that the diff will demonstrate the need for the change that will follow; the opportunities for abstraction are plainly visible. The immutable stack introduced here could be generalized, if needed, in the future. Another important note is that Rust optimizes away the `memcpy`s for the stack that was introduced here. The initial Parser Context was introduced because of `ArrayVec` inhibiting that elision, but Vec never had that problem. In the future, I may choose to go back and remove ArrayVec, but I had wanted to keep memory allocation out of the picture as much as possible to make the disassembly and call graph easier to reason about and to have confidence that optimizations were being performed as intended. With that said---it _should_ be eliding in tamec, since we're not doing anything meaningful yet with the graph. It does also elide in tameld, but it's possible that Rust recognizes that those code paths are never taken because tameld does nothing with expressions. So I'll have to monitor this as I progress and adjust accordingly; it's possible a future commit will call BS on everything I just said. Of course, the counter-point to that is that Rust is optimizing them away anyway, but Vec _does_ still require allocation; I was hoping to keep such allocation at the fringes. But another counter-point is that it _still_ is allocated at the fringe, when the context is initialized for the parser as part of the lowering pipeline. But I didn't know how that would all come together back then. ...alright, enough rambling. DEV-13160 |
||
---|---|---|
.. | ||
benches | ||
build-aux | ||
src | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
Makefile.am | ||
README.md | ||
autogen.sh | ||
bootstrap | ||
configure.ac | ||
rustfmt.toml |
README.md
TAME in Rust (TAMER)
TAME was written to help tame the complexity of developing comparative insurance rating systems. This project aims to tame the complexity and performance issues of TAME itself. TAMER is therefore more tame than TAME.
TAME was originally written in XSLT. For more information about the
project, see the parent README.md
.
Building
To bootstrap from the source repository, run ./bootstrap
.
To configure the build for your system, run ./configure
. To build, run
make
. To run tests, run make check
.
You may also invoke cargo
directly, which make
will do for you using
options provided to configure
.
Note that the default development build results in terrible runtime performance! See [#Build Flags][] below for instructions on how to generate a release binary.
Build Flags
The environment variable CARGO_BUILD_FLAGS
can be used to provide
additional arguments to cargo build
when invoked via make
. This can be
provided optionally during configure
and can be overridden when invoking
make
. For example:
# release build
$ ./configure && make CARGO_BUILD_FLAGS=--release
$ ./configure CARGO_BUILD_FLAGS=--release && make
# dev build
$ ./configure && make
$ ./configure CARGO_BUILD_FLAGS=--release && make CARGO_BUILD_FLAGS=
Hacking
This section contains advice for those developing TAMER.
Running Tests
Developers should be using test-driven development (TDD). make check
will
run all necessary tests.
Code Format
Rust provides rustfmt
that can automatically format code for you. This
project mandates its use and therefore eliminates personal preference in
code style (for better or worse).
Formatting checks are run during make check
and, on failure, will output
the diff that would be applied if you ran make fmt
(or make fix
); this
will run cargo fmt
for you (and will use the binaries configured via
configure
).
Since developers should be doing test-driven development (TDD) and therefore
should be running make check
frequently, the hope is that frequent
feedback on formatting issues will allow developers to quickly adjust their
habits to avoid triggering formatting errors at all.
If you want to automatically fix formatting errors and then run tests:
$ make fmt check
Benchmarking
Benchmarks serve two purposes: external integration tests (which are subject
to module visibility constraints) and actual benchmarking. To run
benchmarks, invoke make bench
.
Note that link-time optimizations (LTO) are performed on the binary for benchmarking so that its performance reflects release builds that will be used in production.
The configure
script will automatically detect whether the test
feature
is unstable (as it was as of the time of writing) and, if so, will
automatically fall back to invoking nightly (by running cargo +nightly bench
).
If you do not have nightly, run you install it via rustup install nightly
.