Mike Gerwitz
3587d032c3
This is generic over the source, just as the target, defaulting just the same to `ObjectIndex`. This allows us to use only the edge information provided rather than having to perform another lookup on the graph and then assert that we found the correct edge. In this case, we're dealing with an `Ident->Expr` edge, of which there is only one, but in other cases, there may be many such edges, and it wouldn't be possible to know _which_ was referred to without also keeping context of the previous edge in the walk. So, in addition to avoiding more indirection and being more immune to logic bugs, this also allows us to avoid states in `AsgTreeToXirf` for the purpose of tracking previous edges in the current path. And it means that the tree walk can seed further traversals in conjunction with it, if that is so needed for deriving sources. More cleanup will be needed, but this does well to set us up for moving forward; I was too uncomfortable with having to do the separate lookup. This is also a more intuitive API. But it does have the awkward effect that now I don't need the pair---I just need the `Object`---but I'm not going to remove it because I suspect I may need it in the future. We'll see. The TODO references the fact that I'm using a convenient `resolve_oi_pairs` instead of resolving only the target first and then the source only in the code path that needs it. I'll want to verify that Rust will properly optimize to avoid the source resolution in branches that do not need it. DEV-13708 |
||
---|---|---|
.. | ||
benches | ||
build-aux | ||
src | ||
tests | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
Makefile.am | ||
README.md | ||
autogen.sh | ||
bootstrap | ||
conf.sh.in | ||
configure.ac | ||
rustfmt.toml |
README.md
TAME in Rust (TAMER)
TAME was written to help tame the complexity of developing comparative insurance rating systems. This project aims to tame the complexity and performance issues of TAME itself. TAMER is therefore more tame than TAME.
TAME was originally written in XSLT. For more information about the
project, see the parent README.md
.
Building
To bootstrap from the source repository, run ./bootstrap
.
To configure the build for your system, run ./configure
. To build, run
make
. To run tests, run make check
.
You may also invoke cargo
directly, which make
will do for you using
options provided to configure
.
Note that the default development build results in terrible runtime performance! See [#Build Flags][] below for instructions on how to generate a release binary.
Build Flags
The environment variable CARGO_BUILD_FLAGS
can be used to provide
additional arguments to cargo build
when invoked via make
. This can be
provided optionally during configure
and can be overridden when invoking
make
. For example:
# release build
$ ./configure && make CARGO_BUILD_FLAGS=--release
$ ./configure CARGO_BUILD_FLAGS=--release && make
# dev build
$ ./configure && make
$ ./configure CARGO_BUILD_FLAGS=--release && make CARGO_BUILD_FLAGS=
Hacking
This section contains advice for those developing TAMER.
Running Tests
Developers should be using test-driven development (TDD). make check
will
run all necessary tests.
Code Format
Rust provides rustfmt
that can automatically format code for you. This
project mandates its use and therefore eliminates personal preference in
code style (for better or worse).
Formatting checks are run during make check
and, on failure, will output
the diff that would be applied if you ran make fmt
(or make fix
); this
will run cargo fmt
for you (and will use the binaries configured via
configure
).
Since developers should be doing test-driven development (TDD) and therefore
should be running make check
frequently, the hope is that frequent
feedback on formatting issues will allow developers to quickly adjust their
habits to avoid triggering formatting errors at all.
If you want to automatically fix formatting errors and then run tests:
$ make fmt check
Benchmarking
Benchmarks serve two purposes: external integration tests (which are subject
to module visibility constraints) and actual benchmarking. To run
benchmarks, invoke make bench
.
Note that link-time optimizations (LTO) are performed on the binary for benchmarking so that its performance reflects release builds that will be used in production.
The configure
script will automatically detect whether the test
feature
is unstable (as it was as of the time of writing) and, if so, will
automatically fall back to invoking nightly (by running cargo +nightly bench
).
If you do not have nightly, run you install it via rustup install nightly
.