tame/tamer
Mike Gerwitz 2a3d5be159 tamer: parse::ParseState::delegate: Initial state stitching concept
This is the delegation portion of what I've come to call "state
stitching"---wiring together two state machines that recognize the same
input tokens.

This handles the delegation of tokens once the parser has been entered, but
does not yet handle the actual stitching part of it: wiring the start and
accepting states of the child parser to the parent.

This is indirectly tested by the XmloReader, but it will receive its own
tests once I further finalize this concept.  I'm playing around with some
ideas.  With that said, a quick visual inspection together with the
guarantees provided by the type system should convince any familiar reader
of its correctness.

DEV-10863
2022-03-29 14:12:26 -04:00
..
benches tamer: xir: Remove Text enum 2021-11-15 23:47:14 -05:00
build-aux Copyright year update 2021 2021-07-22 15:00:15 -04:00
src tamer: parse::ParseState::delegate: Initial state stitching concept 2022-03-29 14:12:26 -04:00
.gitignore TAMER: Initial commit 2019-11-18 14:05:47 -05:00
Cargo.lock tamer: Update dependencies 2022-03-11 10:51:51 -05:00
Cargo.toml tamer: Update dependencies 2022-03-11 10:51:51 -05:00
Makefile.am tamer: cargo --frozen --offline 2021-12-02 11:49:51 -05:00
README.md Copyright year update 2021 2021-07-22 15:00:15 -04:00
autogen.sh Copyright year update 2021 2021-07-22 15:00:15 -04:00
bootstrap tamer: cargo --frozen --offline 2021-12-02 11:49:51 -05:00
configure.ac tamer: cargo --frozen --offline 2021-12-02 11:49:51 -05:00
rustfmt.toml tamer/rustfmt (max_width): Set to 80 2019-11-27 09:15:15 -05:00

README.md

TAME in Rust (TAMER)

TAME was written to help tame the complexity of developing comparative insurance rating systems. This project aims to tame the complexity and performance issues of TAME itself. TAMER is therefore more tame than TAME.

TAME was originally written in XSLT. For more information about the project, see the parent README.md.

Building

To bootstrap from the source repository, run ./bootstrap.

To configure the build for your system, run ./configure. To build, run make. To run tests, run make check.

You may also invoke cargo directly, which make will do for you using options provided to configure.

Note that the default development build results in terrible runtime performance! See [#Build Flags][] below for instructions on how to generate a release binary.

Build Flags

The environment variable CARGO_BUILD_FLAGS can be used to provide additional arguments to cargo build when invoked via make. This can be provided optionally during configure and can be overridden when invoking make. For example:

# release build
$ ./configure && make CARGO_BUILD_FLAGS=--release
$ ./configure CARGO_BUILD_FLAGS=--release && make

# dev build
$ ./configure && make
$ ./configure CARGO_BUILD_FLAGS=--release && make CARGO_BUILD_FLAGS=

Hacking

This section contains advice for those developing TAMER.

Running Tests

Developers should be using test-driven development (TDD). make check will run all necessary tests.

Code Format

Rust provides rustfmt that can automatically format code for you. This project mandates its use and therefore eliminates personal preference in code style (for better or worse).

Formatting checks are run during make check and, on failure, will output the diff that would be applied if you ran make fmt (or make fix); this will run cargo fmt for you (and will use the binaries configured via configure).

Since developers should be doing test-driven development (TDD) and therefore should be running make check frequently, the hope is that frequent feedback on formatting issues will allow developers to quickly adjust their habits to avoid triggering formatting errors at all.

If you want to automatically fix formatting errors and then run tests:

$ make fmt check

Benchmarking

Benchmarks serve two purposes: external integration tests (which are subject to module visibility constraints) and actual benchmarking. To run benchmarks, invoke make bench.

Note that link-time optimizations (LTO) are performed on the binary for benchmarking so that its performance reflects release builds that will be used in production.

The configure script will automatically detect whether the test feature is unstable (as it was as of the time of writing) and, if so, will automatically fall back to invoking nightly (by running cargo +nightly bench).

If you do not have nightly, run you install it via rustup install nightly.