// ASG IR // // Copyright (C) 2014-2023 Ryan Specialty, LLC. // // This file is part of TAME. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . //! Intermediate representation for construction of the //! [abstract semantic graph (ASG)](super) (AIR). //! //! AIR serves as an abstraction layer between higher-level parsers and the //! aggregate ASG. //! It allows parsers to operate as a raw stream of data without having to //! worry about ownership of or references to the ASG, //! and allows for multiple such parsers to be joined. //! //! AIR is _not_ intended to replace the API of the ASG---it //! is intended as a termination point for the parsing pipeline, //! and as such implements a subset of the ASG's API that is suitable //! for aggregating raw data from source and object files. //! Given that it does so little and is so close to the [`Asg`] API, //! one might say that the abstraction is as light as air, //! but that would surely result in face-palming and so we're not going //! air such cringeworthy dad jokes here. use super::{ graph::object::{Expr, Pkg}, Asg, AsgError, ObjectIndex, }; use crate::{ asg::graph::object::Tpl, f::Functor, fmt::{DisplayWrapper, TtQuote}, parse::{util::SPair, ParseState, Transition, Transitionable}, span::Span, sym::SymbolId, }; use std::fmt::{Debug, Display}; #[macro_use] mod ir; pub use ir::Air; pub type IdentSym = SymbolId; pub type DepSym = SymbolId; /// Stack of held expressions, /// with the root expression at the bottom of the stack. /// /// Expression [`ObjectIndex`]es are pushed onto this stack when /// parsing a subexpression, /// and are popped when the subexpression terminates. /// The active expression is _not_ stored on this stack to avoid unnecessary /// indirection. /// /// Despite the immutable interface, /// this does modify the inner [`Vec`] in-place; /// it does not reallocate unless its capacity has been reached. /// /// Unlike other parts of the system, /// this is heap-allocated, /// but should be very cache-friendly. /// This reason for heap allocation is that this is explicitly /// _unbounded_—systems like code generators ought to be able to output /// expressions in a tacit style without worrying about arbitrary limits. /// It is worth noting that the other parts of the system using /// stack-allocated data structures is less about performance and more /// about the simplicity afforded by keeping allocators out of the picture. /// We'll address performance issues if they appear during profiling. /// /// Another benefit of using [`Vec`] here is that Rust is able to properly /// optimize away `memcpy`s for it, /// rather than having to utilize the parser's mutable context. /// Further, /// the ASG is heap-allocated, /// so we're not avoiding the heap anyway. /// /// The interface is modeled after [Haskell's `Stack`][haskell-stack], /// with a slight variation for [`Self::pop`] so that we can avoid /// reallocation after a stack is used up, /// which is frequent. /// /// [haskell-stack]: https://hackage.haskell.org/package/Stack/docs/Data-Stack.html /// /// The stack states [`Dormant`] and [`Active`] selectively provide /// different APIs to enforce certain invariants, /// as an alternative to re-allocating an inner [`Vec`] each time a new /// root expression is encountered. #[derive(Debug, PartialEq, Eq)] pub struct ExprStack(Vec>, S); /// Expression stack is not in use and must be empty; /// no ongoing expression parsing. #[derive(Debug, PartialEq, Eq)] pub struct Dormant; /// Expression stack is in use as part of an expression parse. #[derive(Debug, PartialEq, Eq)] pub struct Active(StackEdge); /// Expression stack has been set aside temporarily for some other operation /// and will be restored after that operation completes. #[derive(Debug, PartialEq, Eq)] pub enum Held { Dormant, Active(Active), } #[derive(Debug, PartialEq, Eq)] pub enum StackEdge { /// Root expression is yet not reachable from any other object. /// /// Dangling expressions are expected to transition into /// [`Self::Reachable`] after being bound to an identifier. /// Closing a dangling expression will result in a /// [`AsgError::DanglingExpr`]. /// /// Binding a sub-expression does not bind the root of the stack, /// since sub-expressions cannot reference their parent; /// a stack is dangling until its root expression has been bound to /// an identifier. Dangling, /// Root expression is reachable from another object. /// /// The associated [`SPair`] serves as _evidence_ of this assertion. Reachable(SPair), } impl Display for StackEdge { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { match self { Self::Dangling => write!(f, "dangling"), Self::Reachable(ident) => { write!(f, "reachable (by {})", TtQuote::wrap(ident)) } } } } impl ExprStack { /// Mark the stack as active, /// exposing its stack API for use. /// /// [`ExprStack::done`] will return the stack to a dormant state. fn activate(self) -> ExprStack { let Self(stack, _) = self; ExprStack(stack, Active(StackEdge::Dangling)) } /// Set the expression stack aside to perform another operation. /// /// The stack can later be restored using [`ExprStack::release_st`], /// and will restore to the same dormant state. fn hold(self) -> ExprStack { match self { Self(stack, _st) => ExprStack(stack, Held::Dormant), } } } impl ExprStack { fn push(self, item: ObjectIndex) -> Self { let Self(mut stack, s) = self; stack.push(item); Self(stack, s) } /// Attempt to remove an item from the stack, /// returning a new stack and the item, /// if any. /// /// This returns a new [`Self`] even if it is empty so that it can be /// reused without having to reallocate. fn pop(self) -> (Self, Option>) { let Self(mut stack, s) = self; let oi = stack.pop(); (Self(stack, s), oi) } /// Whether the stack is dangling. fn is_dangling(&self) -> bool { matches!(self, Self(_, Active(StackEdge::Dangling))) } /// Mark stack as reachable if processing the root expression. /// /// `ident` is admitted as evidence of reachability, /// both for debugging and for making it more difficult to /// misuse this API. /// If the stack is already reachable, /// the previous identifier takes precedence. /// /// If not parsing the root expression /// (if the stack is non-empty), /// this returns `self` unchanged. fn reachable_by(self, ident: SPair) -> Self { match self { Self(stack, Active(StackEdge::Dangling)) if stack.is_empty() => { Self(stack, Active(StackEdge::Reachable(ident))) } _ => self, } } /// Mark the stack as dormant, /// hiding its stack API and ensuring that its state is properly reset /// for the next root expression. /// /// [`ExprStack::activate`] will re-activate the stack for use. fn done(self) -> ExprStack { let Self(stack, _) = self; // TODO: error if non-empty stack (unclosed expr) if !stack.is_empty() { todo!("ExprStack::done(): error on non-empty stack") } ExprStack(stack, Dormant) } } impl ExprStack { /// Produce an [`AirAggregate`] state from a prior expression stacks /// state. /// /// This marks the completion of whatever operation caused the stack to /// be held using one of the `hold` implementations. fn release_st(self, oi_pkg: ObjectIndex) -> AirAggregate { match self { Self(stack, Held::Dormant) => { AirAggregate::PkgDfn(oi_pkg, ExprStack(stack, Dormant)) } Self(_stack, Held::Active(_active)) => { todo!("ExprStack -> Active") } } } } impl Default for ExprStack { fn default() -> Self { // TODO: 16 is a generous guess that is very unlikely to be exceeded // in practice at the time of writing, // even with template expansion, // but let's develop an informed heuristic. // Note that this is very unlikely to make a difference; // I just don't like using numbers without data to back them up. Self(Vec::with_capacity(16), Dormant) } } impl Display for ExprStack { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { let Self(stack, _) = self; write!(f, "dormant expression stack of size {}", stack.capacity()) } } impl Display for ExprStack { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { let Self(stack, Active(edge_st)) = self; write!( f, "active {edge_st} expression stack of length {} and size {}", stack.len(), stack.capacity() ) } } impl Display for ExprStack { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { match self { Self(_, Held::Dormant) => { write!(f, "held dormant expression stack") } Self(_, Held::Active(..)) => { write!(f, "held active expression stack") } } } } /// AIR parser state. #[derive(Debug, PartialEq, Eq)] pub enum AirAggregate { /// Parser is not currently performing any work. Empty(ExprStack), /// A package is being defined. PkgDfn(ObjectIndex, ExprStack), /// Building an expression. /// /// Expressions may be nested arbitrarily deeply. BuildingExpr(ObjectIndex, ExprStack, ObjectIndex), /// Parser is in template parsing mode. /// /// All objects encountered until the closing [`Air::TplClose`] will be /// parented to this template rather than the parent [`Pkg`]. /// See [`Air::TplOpen`] for more information. BuildingTpl( (ObjectIndex, ExprStack), ObjectIndex, Option, ), } impl Default for AirAggregate { fn default() -> Self { Self::Empty(ExprStack::default()) } } impl Display for AirAggregate { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { use AirAggregate::*; match self { Empty(es) => write!(f, "awaiting AIR input for ASG with {es}"), PkgDfn(_, es) => write!(f, "defining package with {es}"), BuildingExpr(_, es, _) => { write!(f, "building expression with {es}") } BuildingTpl((_, es), _, None) => { write!(f, "building anonymous template with {es}") } BuildingTpl((_, es), _, Some(name)) => { write!( f, "building named template {} with {es}", TtQuote::wrap(name) ) } } } } impl ParseState for AirAggregate { type Token = Air; type Object = (); type Error = AsgError; /// Destination [`Asg`] that this parser lowers into. /// /// This ASG will be yielded by [`crate::parse::Parser::finalize`]. type Context = Asg; fn parse_token( self, tok: Self::Token, asg: &mut Self::Context, ) -> crate::parse::TransitionResult { use ir::{ AirBind::*, AirExpr::*, AirIdent::*, AirPkg::*, AirSubsets::*, AirTodo::*, AirTpl::*, }; use AirAggregate::*; // TODO: Seems to be about time for refactoring this... match (self, tok.into()) { (st, AirTodo(Todo(_))) => Transition(st).incomplete(), (Empty(es), AirPkg(PkgOpen(span))) => { let oi_pkg = asg.create(Pkg::new(span)).root(asg); Transition(PkgDfn(oi_pkg, es)).incomplete() } (PkgDfn(oi_pkg, es), AirPkg(PkgOpen(span))) => { Transition(PkgDfn(oi_pkg, es)) .err(AsgError::NestedPkgOpen(span, oi_pkg.span())) } (BuildingExpr(oi_pkg, es, oi), AirPkg(PkgOpen(span))) => { Transition(BuildingExpr(oi_pkg, es, oi)) .err(AsgError::NestedPkgOpen(span, oi_pkg.span())) } (PkgDfn(oi_pkg, es), AirPkg(PkgClose(span))) => { oi_pkg.close(asg, span); Transition(Empty(es)).incomplete() } (st @ (Empty(..) | BuildingExpr(..)), AirPkg(PkgClose(span))) => { Transition(st).err(AsgError::InvalidPkgCloseContext(span)) } (PkgDfn(oi_pkg, es), AirExpr(ExprOpen(op, span))) => { let oi = asg.create(Expr::new(op, span)); Transition(BuildingExpr(oi_pkg, es.activate(), oi)).incomplete() } (BuildingExpr(oi_pkg, es, poi), AirExpr(ExprOpen(op, span))) => { let oi = poi.create_subexpr(asg, Expr::new(op, span)); Transition(BuildingExpr(oi_pkg, es.push(poi), oi)).incomplete() } ( st @ Empty(..), AirExpr(ExprOpen(_, span)) | AirTpl(TplOpen(span)), ) => Transition(st).err(AsgError::PkgExpected(span)), (st @ (Empty(..) | PkgDfn(..)), AirExpr(ExprClose(span))) => { Transition(st).err(AsgError::UnbalancedExpr(span)) } (BuildingExpr(oi_pkg, es, oi), AirExpr(ExprClose(end))) => { let start: Span = oi.into(); let _ = oi.map_obj(asg, |expr| { expr.map(|span| span.merge(end).unwrap_or(span)) }); match es.pop() { (es, Some(poi)) => { Transition(BuildingExpr(oi_pkg, es, poi)).incomplete() } (es, None) => { let dangling = es.is_dangling(); let st = PkgDfn(oi_pkg, es.done()); if dangling { Transition(st).err(AsgError::DanglingExpr( start.merge(end).unwrap_or(start), )) } else { Transition(st).incomplete() } } } } (BuildingExpr(oi_pkg, es, oi), AirBind(BindIdent(id))) => { let oi_ident = asg.lookup_or_missing(id); oi_pkg.defines(asg, oi_ident); // It is important that we do not mark this expression as // reachable unless we successfully bind the identifier. match oi_ident.bind_definition(asg, id, oi) { Ok(_) => Transition(BuildingExpr( oi_pkg, es.reachable_by(id), oi, )) .incomplete(), Err(e) => Transition(BuildingExpr(oi_pkg, es, oi)).err(e), } } (BuildingExpr(oi_pkg, es, oi), AirExpr(ExprRef(ident))) => { Transition(BuildingExpr(oi_pkg, es, oi.ref_expr(asg, ident))) .incomplete() } (st @ (Empty(_) | PkgDfn(_, _)), AirBind(BindIdent(ident))) => { Transition(st).err(AsgError::InvalidExprBindContext(ident)) } (st @ (Empty(_) | PkgDfn(_, _)), AirExpr(ExprRef(ident))) => { Transition(st).err(AsgError::InvalidExprRefContext(ident)) } (st @ Empty(_), AirIdent(IdentDecl(name, kind, src))) => { asg.declare(name, kind, src).map(|_| ()).transition(st) } (st @ Empty(_), AirIdent(IdentExternDecl(name, kind, src))) => asg .declare_extern(name, kind, src) .map(|_| ()) .transition(st), (st @ Empty(_), AirIdent(IdentDep(sym, dep))) => { asg.add_dep_lookup(sym, dep); Transition(st).incomplete() } (st @ Empty(_), AirIdent(IdentFragment(sym, text))) => { asg.set_fragment(sym, text).map(|_| ()).transition(st) } (st @ Empty(_), AirIdent(IdentRoot(sym))) => { let obj = asg.lookup_or_missing(sym); asg.add_root(obj); Transition(st).incomplete() } (PkgDfn(oi_pkg, es), AirTpl(TplOpen(span))) => { let oi_tpl = asg.create(Tpl::new(span)); Transition(BuildingTpl((oi_pkg, es.hold()), oi_tpl, None)) .incomplete() } (BuildingExpr(..), AirTpl(TplOpen(_span))) => { todo!("BuildingExpr TplOpen") } ( BuildingTpl((oi_pkg, es), oi_tpl, None), AirBind(BindIdent(name)), ) => asg .lookup_or_missing(name) .bind_definition(asg, name, oi_tpl) .map(|oi_ident| oi_pkg.defines(asg, oi_ident)) .map(|_| ()) .transition(BuildingTpl((oi_pkg, es), oi_tpl, Some(name))), (BuildingTpl((oi_pkg, es), oi_tpl, _), AirTpl(TplClose(span))) => { oi_tpl.close(asg, span); Transition(es.release_st(oi_pkg)).incomplete() } (BuildingTpl(..), tok) => todo!("BuildingTpl body: {tok:?}"), ( st @ (Empty(..) | PkgDfn(..) | BuildingExpr(..)), AirTpl(TplClose(span)), ) => Transition(st).err(AsgError::UnbalancedTpl(span)), (st, tok @ AirIdent(_)) => todo!("{st:?}, {tok:?}"), } } fn is_accepting(&self, _: &Self::Context) -> bool { matches!(self, Self::Empty(_)) } } #[cfg(test)] mod test;