// Tests for ASG IR expression parsing // // Copyright (C) 2014-2023 Ryan Specialty, LLC. // // This file is part of TAME. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . use super::*; use crate::asg::{ air::{ test::{asg_from_toks, parse_as_pkg_body}, Air, AirAggregate, }, graph::object::{expr::ExprRel, ObjectRel}, ExprOp, Ident, }; use crate::span::dummy::*; use std::assert_matches::assert_matches; type Sut = AirAggregate; pub fn collect_subexprs( asg: &Asg, oi: ObjectIndex, ) -> Vec<(ObjectIndex, &Expr)> { oi.edges(&asg) .filter_map(|rel| rel.narrow::()) .map(|oi| (oi, oi.resolve(&asg))) .collect::>() } #[test] fn expr_empty_ident() { let id = SPair("foo".into(), S2); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id), Air::ExprEnd(S3), ]; let mut sut = parse_as_pkg_body(toks); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); // The expression should have been bound to this identifier so that // we're able to retrieve it from the graph by name. let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S1.merge(S3).unwrap()); } #[test] fn expr_without_pkg() { let toks = vec![ // No package // (because we're not parsing with `parse_as_pkg_body` below) Air::ExprStart(ExprOp::Sum, S1), // RECOVERY Air::PkgStart(S2), Air::PkgEnd(S3), ]; assert_eq!( vec![ Err(ParseError::StateError(AsgError::PkgExpected(S1))), // RECOVERY Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // PkgEnd ], Sut::parse(toks.into_iter()).collect::>(), ); } // Note that this can't happen in e.g. NIR / TAME's source XML. #[test] fn close_pkg_mid_expr() { let id = SPair("foo".into(), S4); #[rustfmt::skip] let toks = vec![ Air::PkgStart(S1), Air::ExprStart(ExprOp::Sum, S2), Air::PkgEnd(S3), // RECOVERY: Let's finish the expression first... Air::BindIdent(id), Air::ExprEnd(S5), // ...and then try to close again. Air::PkgEnd(S6), ]; assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Err(ParseError::StateError(AsgError::InvalidPkgEndContext(S3))), // RECOVERY: We should be able to close the package if we // just finish the expression first, // demonstrating that recovery properly maintains all // state. Ok(Parsed::Incomplete), // BindIdent Ok(Parsed::Incomplete), // ExprEnd // Successful close here. Ok(Parsed::Incomplete), // PkgEnd ], Sut::parse(toks.into_iter()).collect::>(), ); } #[test] fn open_pkg_mid_expr() { let id = SPair("foo".into(), S4); #[rustfmt::skip] let toks = vec![ Air::PkgStart(S1), Air::ExprStart(ExprOp::Sum, S2), Air::PkgStart(S3), // RECOVERY: We should still be able to complete successfully. Air::BindIdent(id), Air::ExprEnd(S5), // Closes the _original_ package. Air::PkgEnd(S6), ]; assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Err(ParseError::StateError(AsgError::NestedPkgStart(S3, S1))), // RECOVERY: Ignore the open and continue. // Of course, // this means that any identifiers would be defined in a // different package than was likely intended, // but at least we'll be able to keep processing. Ok(Parsed::Incomplete), // BindIdent Ok(Parsed::Incomplete), // ExprEnd Ok(Parsed::Incomplete), // PkgEnd ], Sut::parse(toks.into_iter()).collect::>(), ); } #[test] fn expr_non_empty_ident_root() { let id_a = SPair("foo".into(), S2); let id_b = SPair("bar".into(), S2); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // Identifier while still empty... Air::BindIdent(id_a), Air::ExprStart(ExprOp::Sum, S3), // (note that the inner expression _does not_ have an ident // binding) Air::ExprEnd(S4), // ...and an identifier non-empty. Air::BindIdent(id_b), Air::ExprEnd(S6), ]; let mut sut = parse_as_pkg_body(toks); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); let expr_a = asg.expect_ident_obj::(id_a); assert_eq!(expr_a.span(), S1.merge(S6).unwrap()); // Identifiers should reference the same expression. let expr_b = asg.expect_ident_obj::(id_b); assert_eq!(expr_a, expr_b); } // Binding an identifier after a child expression means that the parser is // creating an expression that is a child of a dangling expression, // which only becomes reachable at the end. #[test] fn expr_non_empty_bind_only_after() { let id = SPair("foo".into(), S2); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // Expression root is still dangling at this point. Air::ExprStart(ExprOp::Sum, S2), Air::ExprEnd(S3), // We only bind an identifier _after_ we've created the expression, // which should cause the still-dangling root to become // reachable. Air::BindIdent(id), Air::ExprEnd(S5), ]; let mut sut = parse_as_pkg_body(toks); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S1.merge(S5).unwrap()); } // Danging expressions are unreachable and therefore not useful // constructions. // Prohibit them, // since they're either mistakes or misconceptions. #[test] fn expr_dangling_no_subexpr() { let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // No `BindIdent`, // so this expression is dangling. Air::ExprEnd(S2), ]; // The error span should encompass the entire expression. let full_span = S1.merge(S2).unwrap(); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(full_span))), // RECOVERY Ok(Parsed::Incomplete), // PkgEnd ], parse_as_pkg_body(toks).collect::>(), ); } #[test] fn expr_dangling_with_subexpr() { #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // Expression root is still dangling at this point. Air::ExprStart(ExprOp::Sum, S2), Air::ExprEnd(S3), // Still no ident binding, // so root should still be dangling. Air::ExprEnd(S4), ]; let full_span = S1.merge(S4).unwrap(); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // ExprEnd Err(ParseError::StateError(AsgError::DanglingExpr(full_span))), // RECOVERY Ok(Parsed::Incomplete), // PkgEnd ], parse_as_pkg_body(toks).collect::>(), ); } #[test] fn expr_dangling_with_subexpr_ident() { let id = SPair("foo".into(), S3); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // Expression root is still dangling at this point. Air::ExprStart(ExprOp::Sum, S2), // The _inner_ expression receives an identifier, // but that should have no impact on the dangling status of // the root, // especially given that subexpressions are always reachable // anyway. Air::BindIdent(id), Air::ExprEnd(S4), // But the root still has no ident binding, // and so should still be dangling. Air::ExprEnd(S5), ]; let full_span = S1.merge(S5).unwrap(); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIndent Ok(Parsed::Incomplete), // ExprEnd Err(ParseError::StateError(AsgError::DanglingExpr(full_span))), // RECOVERY Ok(Parsed::Incomplete), // PkgEnd ], parse_as_pkg_body(toks).collect::>(), ); } // Ensure that the parser correctly recognizes dangling expressions after // having encountered a reachable expression. // Ideally the parser will have been written to make this impossible, // but this also protects against potential future breakages. #[test] fn expr_reachable_subsequent_dangling() { let id = SPair("foo".into(), S2); #[rustfmt::skip] let toks = vec![ // Reachable Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id), Air::ExprEnd(S3), // Dangling Air::ExprStart(ExprOp::Sum, S4), Air::ExprEnd(S5), ]; // The error span should encompass the entire expression. // TODO: ...let's actually have something inside this expression. let second_span = S4.merge(S5).unwrap(); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart // Reachable Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), // Dangling Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(second_span))), // RECOVERY Ok(Parsed::Incomplete), // PkgEnd ], parse_as_pkg_body(toks).collect::>(), ); } // Recovery from dangling expression. #[test] fn recovery_expr_reachable_after_dangling() { let id = SPair("foo".into(), S4); #[rustfmt::skip] let toks = vec![ // Dangling Air::ExprStart(ExprOp::Sum, S1), Air::ExprEnd(S2), // Reachable, after error from dangling. Air::ExprStart(ExprOp::Sum, S3), Air::BindIdent(id), Air::ExprEnd(S5), ]; // The error span should encompass the entire expression. let err_span = S1.merge(S2).unwrap(); let mut sut = parse_as_pkg_body(toks); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(err_span))), // RECOVERY: continue at this point with the next expression. Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), // PkgEnd ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Let's make sure that we _actually_ added it to the graph, // despite the previous error. let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S3.merge(S5).unwrap()); // The dangling expression may or may not be on the graph, // but it doesn't matter; // we cannot reference it // (unless we break abstraction and walk the underlying graph). // Let's leave this undefined so that we have flexibility in what we // decide to do in the future. // So we end here. } #[test] fn expr_close_unbalanced() { let id = SPair("foo".into(), S3); #[rustfmt::skip] let toks = vec![ // Close before _any_ open. Air::ExprEnd(S1), // Should recover, // allowing for a normal expr. Air::ExprStart(ExprOp::Sum, S2), Air::BindIdent(id), Air::ExprEnd(S4), // And now an extra close _after_ a valid expr. Air::ExprEnd(S5), ]; let mut sut = parse_as_pkg_body(toks); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Err(ParseError::StateError(AsgError::UnbalancedExpr(S1))), // RECOVERY Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIdent Ok(Parsed::Incomplete), // ExprEnd // Another error after a successful expression. Err(ParseError::StateError(AsgError::UnbalancedExpr(S5))), // RECOVERY Ok(Parsed::Incomplete), // PkgEnd ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Just verify that the expression was successfully added after recovery. let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S2.merge(S4).unwrap()); } #[test] fn expr_bind_to_empty() { let id_pre = SPair("pre".into(), S2); let id_noexpr_a = SPair("noexpr_a".into(), S4); let id_good = SPair("good".into(), S6); let id_noexpr_b = SPair("noexpr_b".into(), S8); #[rustfmt::skip] let toks = vec![ // We need to first bring ourselves out of the context of the // package header, // otherwise the bind will be interpreted as a bind to the // package itself. Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id_pre), Air::ExprEnd(S3), // No open expression to bind to. Air::BindIdent(id_noexpr_a), // Post-recovery create an expression. Air::ExprStart(ExprOp::Sum, S5), Air::BindIdent(id_good), Air::ExprEnd(S7), // Once again we have nothing to bind to. Air::BindIdent(id_noexpr_b), ]; let mut sut = parse_as_pkg_body(toks); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart // Just to get out of a package header context Ok(Parsed::Incomplete), // ExprStart (pre) Ok(Parsed::Incomplete), // BindIdent (pre) Ok(Parsed::Incomplete), // ExprEnd (pre) // Now that we've encountered an expression, // we want an error specific to expression binding, // since it's likely that a bind token was issued too late, // rather than trying to interpret this as being back in a // package context and binding to the package. Err(ParseError::StateError(AsgError::InvalidExprBindContext( id_noexpr_a ))), // RECOVERY Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIdent Ok(Parsed::Incomplete), // ExprEnd // Another error after a successful expression. Err(ParseError::StateError(AsgError::InvalidExprBindContext( id_noexpr_b ))), // RECOVERY Ok(Parsed::Incomplete), // PkgEnd ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Neither of the identifiers outside of expressions should exist on the // graph. assert_eq!(None, asg.get_ident_obj::(id_noexpr_a)); assert_eq!(None, asg.get_ident_obj::(id_noexpr_b)); // Verify that the expression was successfully added after recovery. let expr = asg.expect_ident_obj::(id_good); assert_eq!(expr.span(), S5.merge(S7).unwrap()); } // Subexpressions should not only have edges to their parent, // but those edges ought to be ordered, // allowing TAME to handle non-commutative expressions. // We must further understand the relative order in which edges are stored // for non-associative expressions. #[test] fn sibling_subexprs_have_ordered_edges_to_parent() { let id_root = SPair("root".into(), S1); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // Identify the root so that it is not dangling. Air::BindIdent(id_root), // Sibling A Air::ExprStart(ExprOp::Sum, S3), Air::ExprEnd(S4), // Sibling B Air::ExprStart(ExprOp::Sum, S5), Air::ExprEnd(S6), // Sibling C Air::ExprStart(ExprOp::Sum, S7), Air::ExprEnd(S8), Air::ExprEnd(S9), ]; let asg = asg_from_toks(toks); // The root is the parent expression that should contain edges to each // subexpression // (the siblings above). // Note that we retrieve its _index_, // not the object itself. let oi_root = asg.expect_ident_oi::(id_root); let siblings = oi_root .edges_filtered::(&asg) .map(ObjectIndex::cresolve(&asg)) .collect::>(); // The reversal here is an implementation detail with regards to how // Petgraph stores its edges as effectively linked lists, // using node indices instead of pointers. // It is very important that we understand this behavior. assert_eq!(siblings.len(), 3); assert_eq!(siblings[2].span(), S3.merge(S4).unwrap()); assert_eq!(siblings[1].span(), S5.merge(S6).unwrap()); assert_eq!(siblings[0].span(), S7.merge(S8).unwrap()); } #[test] fn nested_subexprs_related_to_relative_parent() { let id_root = SPair("root".into(), S1); let id_suba = SPair("suba".into(), S2); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), // 0 Air::BindIdent(id_root), Air::ExprStart(ExprOp::Sum, S2), // 1 Air::BindIdent(id_suba), Air::ExprStart(ExprOp::Sum, S3), // 2 Air::ExprEnd(S4), Air::ExprEnd(S5), Air::ExprEnd(S6), ]; let asg = asg_from_toks(toks); let oi_0 = asg.expect_ident_oi::(id_root); let subexprs_0 = collect_subexprs(&asg, oi_0); // Subexpr 1 assert_eq!(subexprs_0.len(), 1); let (oi_1, subexpr_1) = subexprs_0[0]; assert_eq!(subexpr_1.span(), S2.merge(S5).unwrap()); let subexprs_1 = collect_subexprs(&asg, oi_1); // Subexpr 2 assert_eq!(subexprs_1.len(), 1); let (_, subexpr_2) = subexprs_1[0]; assert_eq!(subexpr_2.span(), S3.merge(S4).unwrap()); } #[test] fn expr_redefine_ident() { // Same identifier but with different spans // (which would be the case in the real world). let id_first = SPair("foo".into(), S2); let id_dup = SPair("foo".into(), S3); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id_first), Air::ExprStart(ExprOp::Sum, S3), Air::BindIdent(id_dup), Air::ExprEnd(S4), Air::ExprEnd(S5), ]; let mut sut = parse_as_pkg_body(toks); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIdent (first) Ok(Parsed::Incomplete), // ExprStart Err(ParseError::StateError(AsgError::IdentRedefine( id_first, id_dup.span(), ))), // RECOVERY: Ignore the attempt to redefine and continue. Ok(Parsed::Incomplete), // ExprEnd Ok(Parsed::Incomplete), // ExprEnd Ok(Parsed::Incomplete), // PkgEnd ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // The identifier should continue to reference the first expression. let expr = asg.expect_ident_obj::(id_first); assert_eq!(expr.span(), S1.merge(S5).unwrap()); } // Similar to the above test, // but with two entirely separate expressions, // such that a failure to identify an expression ought to leave it in an // unreachable state. #[test] fn expr_still_dangling_on_redefine() { // Same identifier but with different spans // (which would be the case in the real world). let id_first = SPair("foo".into(), S2); let id_dup = SPair("foo".into(), S5); let id_dup2 = SPair("foo".into(), S8); let id_second = SPair("bar".into(), S9); #[rustfmt::skip] let toks = vec![ // First expr (OK) Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id_first), Air::ExprEnd(S3), // Second expr should still dangle due to use of duplicate // identifier Air::ExprStart(ExprOp::Sum, S4), Air::BindIdent(id_dup), Air::ExprEnd(S6), // Third expr will error on redefine but then be successful. // This probably won't happen in practice with TAME's original // source language, // but could happen at e.g. a REPL. Air::ExprStart(ExprOp::Sum, S7), Air::BindIdent(id_dup2), // fail Air::BindIdent(id_second), // succeed Air::ExprEnd(S10), ]; let mut sut = parse_as_pkg_body(toks); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIdent (first) Ok(Parsed::Incomplete), // ExprEnd // Beginning of second expression Ok(Parsed::Incomplete), // ExprStart Err(ParseError::StateError(AsgError::IdentRedefine( id_first, id_dup.span(), ))), // RECOVERY: Ignore the attempt to redefine and continue. // ...but then immediately fail _again_ because we've closed a // dangling expression. Err(ParseError::StateError(AsgError::DanglingExpr( S4.merge(S6).unwrap() ))), // RECOVERY: But we'll continue onto one final expression, // which we will fail to define but then subsequently define // successfully. Ok(Parsed::Incomplete), // ExprStart Err(ParseError::StateError(AsgError::IdentRedefine( id_first, id_dup2.span(), ))), // RECOVERY: Despite the initial failure, // we can now re-attempt to bind with a unique id. Ok(Parsed::Incomplete), // BindIdent (second) Ok(Parsed::Incomplete), // ExprEnd Ok(Parsed::Incomplete), // PkgEnd ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // The identifier should continue to reference the first expression. let expr = asg.expect_ident_obj::(id_first); assert_eq!(expr.span(), S1.merge(S3).unwrap()); // There's nothing we can do using the ASG's public API at the time of // writing to try to reference the dangling expression. // The second identifier should have been successfully bound despite the // failed initial attempt. let expr = asg.expect_ident_obj::(id_second); assert_eq!(expr.span(), S7.merge(S10).unwrap()); } #[test] fn expr_ref_to_ident() { let id_foo = SPair("foo".into(), S2); let id_bar = SPair("bar".into(), S6); #[rustfmt::skip] let toks = vec![ Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id_foo), // Reference to an as-of-yet-undefined id (okay), // with a different span than `id_bar`. Air::RefIdent(SPair("bar".into(), S3)), Air::ExprEnd(S4), // // Another expression to reference the first // (we don't handle cyclic references until a topological sort, // so no point in referencing ourselves; // it'd work just fine here.) Air::ExprStart(ExprOp::Sum, S5), Air::BindIdent(id_bar), Air::ExprEnd(S7), ]; let asg = asg_from_toks(toks); let oi_foo = asg.expect_ident_oi::(id_foo); let mut foo_rels = oi_foo .edges(&asg) .filter_map(ExprRel::narrows_into::) .collect::>(); // We should have only a single reference (to `id_bar`). assert_eq!(foo_rels.len(), 1); let oi_ident_bar = foo_rels.pop().and_then(ExprRel::narrow::).unwrap(); let ident_bar = oi_ident_bar.resolve(&asg); // The identifier will have originally been `Missing`, // since it did not exist at the point of reference. // But it should now properly identify the other expression. assert_matches!(ident_bar, Ident::Transparent(..)); // The span of the identifier must be updated with the defining // `BindIdent`, // otherwise it'll be the location of the `RefIdent` that originally // added it as `Missing`. assert_eq!(ident_bar.span(), id_bar.span()); let oi_expr_bar = asg.expect_ident_oi::(id_bar); assert!(oi_ident_bar.is_bound_to(&asg, oi_expr_bar)); } #[test] fn expr_ref_outside_of_expr_context() { let id_pre = SPair("pre".into(), S2); let id_foo = SPair("foo".into(), S4); #[rustfmt::skip] let toks = vec![ // We need to first bring ourselves out of the context of the // package header. Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id_pre), Air::ExprEnd(S3), // This will fail since we're not in an expression context. Air::RefIdent(id_foo), // RECOVERY: Simply ignore the above. Air::ExprStart(ExprOp::Sum, S1), Air::BindIdent(id_foo), Air::ExprEnd(S3), ]; let mut sut = parse_as_pkg_body(toks); assert_eq!( #[rustfmt::skip] vec![ Ok(Parsed::Incomplete), // PkgStart Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIdent Ok(Parsed::Incomplete), // ExprEnd // Now we're past the header and in expression parsing mode. Err(ParseError::StateError(AsgError::InvalidExprRefContext( id_foo ))), // RECOVERY: Proceed as normal Ok(Parsed::Incomplete), // ExprStart Ok(Parsed::Incomplete), // BindIdent Ok(Parsed::Incomplete), // ExprEnd Ok(Parsed::Incomplete), // PkgEnd ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Verify that the identifier was bound just to have some confidence in // the recovery. let expr = asg.expect_ident_obj::(id_foo); assert_eq!(expr.span(), S1.merge(S3).unwrap()); } #[test] fn idents_share_defining_pkg() { let id_foo = SPair("foo".into(), S3); let id_bar = SPair("bar".into(), S5); let id_baz = SPair("baz".into(), S6); // An expression nested within another. #[rustfmt::skip] let toks = vec![ Air::PkgStart(S1), Air::ExprStart(ExprOp::Sum, S2), Air::BindIdent(id_foo), Air::ExprStart(ExprOp::Sum, S4), Air::BindIdent(id_bar), Air::RefIdent(id_baz), Air::ExprEnd(S7), Air::ExprEnd(S8), Air::PkgEnd(S9), ]; let mut sut = Sut::parse(toks.into_iter()); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); let oi_foo = asg.lookup_global(id_foo).unwrap(); let oi_bar = asg.lookup_global(id_bar).unwrap(); assert_eq!(oi_foo.src_pkg(&asg).unwrap(), oi_bar.src_pkg(&asg).unwrap()); // Missing identifiers should not have a source package, // since we don't know what defined it yet. let oi_baz = asg.lookup_global(id_baz).unwrap(); assert_eq!(None, oi_baz.src_pkg(&asg)); // The package span should encompass the entire definition. assert_eq!( S1.merge(S9), oi_foo.src_pkg(&asg).map(|pkg| pkg.resolve(&asg).span()) ) }