// Tests for ASG IR // // Copyright (C) 2014-2022 Ryan Specialty Group, LLC. // // This file is part of TAME. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . //! These are tested as if they are another API directly atop of the ASG, //! since that is how they are used. use super::super::graph::object::{ObjectKind, ObjectRelTo}; use super::super::Ident; use super::*; use crate::{ parse::{ParseError, Parsed}, span::dummy::*, }; use std::assert_matches::assert_matches; type Sut = AirAggregate; #[test] fn ident_decl() { let id = SPair("foo".into(), S1); let kind = IdentKind::Tpl; let src = Source { src: Some("test/decl".into()), ..Default::default() }; let toks = vec![Air::IdentDecl(id, kind.clone(), src.clone())].into_iter(); let mut sut = Sut::parse(toks); assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); let asg = sut.finalize().unwrap().into_context(); let ident_node = asg.lookup(id).expect("identifier was not added to graph"); let ident = asg.get(ident_node).unwrap(); assert_eq!( Ok(ident), Ident::declare(id) .resolve(S1, kind.clone(), src.clone()) .as_ref(), ); // Re-instantiate the parser and test an error by attempting to // redeclare the same identifier. let bad_toks = vec![Air::IdentDecl(SPair(id.symbol(), S2), kind, src)].into_iter(); let mut sut = Sut::parse_with_context(bad_toks, asg); assert_matches!( sut.next(), Some(Err(ParseError::StateError(AsgError::IdentTransition(_)))), ); } #[test] fn ident_extern_decl() { let id = SPair("foo".into(), S1); let kind = IdentKind::Tpl; let src = Source { src: Some("test/decl-extern".into()), ..Default::default() }; let toks = vec![Air::IdentExternDecl(id, kind.clone(), src.clone())].into_iter(); let mut sut = Sut::parse(toks); assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); let asg = sut.finalize().unwrap().into_context(); let ident_node = asg.lookup(id).expect("identifier was not added to graph"); let ident = asg.get(ident_node).unwrap(); assert_eq!( Ok(ident), Ident::declare(id).extern_(S1, kind, src.clone()).as_ref(), ); // Re-instantiate the parser and test an error by attempting to // redeclare with a different kind. let different_kind = IdentKind::Meta; let bad_toks = vec![Air::IdentExternDecl( SPair(id.symbol(), S2), different_kind, src, )] .into_iter(); let mut sut = Sut::parse_with_context(bad_toks, asg); assert_matches!( sut.next(), Some(Err(ParseError::StateError(AsgError::IdentTransition(_)))), ); } #[test] fn ident_dep() { let id = SPair("foo".into(), S1); let dep = SPair("dep".into(), S2); let toks = vec![Air::IdentDep(id, dep)].into_iter(); let mut sut = Sut::parse(toks); assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); let asg = sut.finalize().unwrap().into_context(); let ident_node = asg.lookup(id).expect("identifier was not added to graph"); let dep_node = asg.lookup(dep).expect("dep was not added to graph"); assert!(asg.has_dep(ident_node, dep_node)); } #[test] fn ident_fragment() { let id = SPair("frag".into(), S1); let kind = IdentKind::Tpl; let src = Source { src: Some("test/frag".into()), ..Default::default() }; let frag = "fragment text".into(); let toks = vec![ // Identifier must be declared before it can be given a // fragment. Air::IdentDecl(id, kind.clone(), src.clone()), Air::IdentFragment(id, frag), ] .into_iter(); let mut sut = Sut::parse(toks); assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); // IdentDecl assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); // IdentFragment let asg = sut.finalize().unwrap().into_context(); let ident_node = asg.lookup(id).expect("identifier was not added to graph"); let ident = asg.get(ident_node).unwrap(); assert_eq!( Ok(ident), Ident::declare(id) .resolve(S1, kind.clone(), src.clone()) .and_then(|resolved| resolved.set_fragment(frag)) .as_ref(), ); // Re-instantiate the parser and test an error by attempting to // re-set the fragment. let bad_toks = vec![Air::IdentFragment(id, frag)].into_iter(); let mut sut = Sut::parse_with_context(bad_toks, asg); assert_matches!( sut.next(), Some(Err(ParseError::StateError(AsgError::IdentTransition(_)))), ); } // Adding a root before the identifier exists should add a // `Ident::Missing`. #[test] fn ident_root_missing() { let id = SPair("toroot".into(), S1); let toks = vec![Air::IdentRoot(id)].into_iter(); let mut sut = Sut::parse(toks); assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); let asg = sut.finalize().unwrap().into_context(); let ident_node = asg .lookup(id) .expect("identifier was not added to the graph"); let ident = asg.get(ident_node).unwrap(); // The identifier did not previously exist, // and so a missing node is created as a placeholder. assert_eq!(&Ident::Missing(id), ident); // And that missing identifier should be rooted. assert!(asg.is_rooted(ident_node)); } #[test] fn ident_root_existing() { let id = SPair("toroot".into(), S1); let kind = IdentKind::Tpl; let src = Source { src: Some("test/root-existing".into()), ..Default::default() }; // Ensure that it won't auto-root based on the kind, // otherwise we won't be testing the right thing. assert!(!kind.is_auto_root()); let toks = vec![ Air::IdentDecl(id, kind.clone(), src.clone()), Air::IdentRoot(SPair(id.symbol(), S2)), ] .into_iter(); let mut sut = Sut::parse(toks); assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); // IdentDecl assert_eq!(Some(Ok(Parsed::Incomplete)), sut.next()); // IdentRoot let asg = sut.finalize().unwrap().into_context(); let ident_node = asg .lookup(id) .expect("identifier was not added to the graph"); let ident = asg.get(ident_node).unwrap(); // The previously-declared identifier... assert_eq!( Ok(ident), Ident::declare(id) .resolve(S1, kind.clone(), src.clone()) .as_ref() ); // ...should have been subsequently rooted. assert!(asg.is_rooted(ident_node)); } #[test] fn expr_empty_ident() { let id = SPair("foo".into(), S2); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), Air::IdentExpr(id), Air::CloseExpr(S3), ]; let mut sut = Sut::parse(toks.into_iter()); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); // The expression should have been bound to this identifier so that // we're able to retrieve it from the graph by name. let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S1.merge(S3).unwrap()); } #[test] fn expr_non_empty_ident_root() { let id_a = SPair("foo".into(), S2); let id_b = SPair("bar".into(), S2); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // Identifier while still empty... Air::IdentExpr(id_a), Air::OpenExpr(ExprOp::Sum, S3), // (note that the inner expression _does not_ have an ident binding) Air::CloseExpr(S4), // ...and an identifier non-empty. Air::IdentExpr(id_b), Air::CloseExpr(S6), ]; let mut sut = Sut::parse(toks.into_iter()); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); let expr_a = asg.expect_ident_obj::(id_a); assert_eq!(expr_a.span(), S1.merge(S6).unwrap()); // Identifiers should reference the same expression. let expr_b = asg.expect_ident_obj::(id_b); assert_eq!(expr_a, expr_b); } // Binding an identifier after a child expression means that the parser is // creating an expression that is a child of a dangling expression, // which only becomes reachable at the end. #[test] fn expr_non_empty_bind_only_after() { let id = SPair("foo".into(), S2); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // Expression root is still dangling at this point. Air::OpenExpr(ExprOp::Sum, S2), Air::CloseExpr(S3), // We only bind an identifier _after_ we've created the expression, // which should cause the still-dangling root to become // reachable. Air::IdentExpr(id), Air::CloseExpr(S5), ]; let mut sut = Sut::parse(toks.into_iter()); assert!(sut.all(|x| x.is_ok())); let asg = sut.finalize().unwrap().into_context(); let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S1.merge(S5).unwrap()); } // Danging expressions are unreachable and therefore not useful // constructions. // Prohibit them, // since they're either mistakes or misconceptions. #[test] fn expr_dangling_no_subexpr() { let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // No `IdentExpr`, // so this expression is dangling. Air::CloseExpr(S2), ]; // The error span should encompass the entire expression. let full_span = S1.merge(S2).unwrap(); assert_eq!( vec![ Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(full_span))) ], Sut::parse(toks.into_iter()).collect::>(), ); } #[test] fn expr_dangling_with_subexpr() { let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // Expression root is still dangling at this point. Air::OpenExpr(ExprOp::Sum, S2), Air::CloseExpr(S3), // Still no ident binding, // so root should still be dangling. Air::CloseExpr(S4), ]; let full_span = S1.merge(S4).unwrap(); assert_eq!( vec![ Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(full_span))) ], Sut::parse(toks.into_iter()).collect::>(), ); } #[test] fn expr_dangling_with_subexpr_ident() { let id = SPair("foo".into(), S3); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // Expression root is still dangling at this point. Air::OpenExpr(ExprOp::Sum, S2), // The _inner_ expression receives an identifier, // but that should have no impact on the dangling status of the // root, // especially given that subexpressions are always reachable // anyway. Air::IdentExpr(id), Air::CloseExpr(S4), // But the root still has no ident binding, // and so should still be dangling. Air::CloseExpr(S5), ]; let full_span = S1.merge(S5).unwrap(); assert_eq!( vec![ Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(full_span))) ], Sut::parse(toks.into_iter()).collect::>(), ); } // Ensure that the parser correctly recognizes dangling expressions after // having encountered a reachable expression. // Ideally the parser will have been written to make this impossible, // but this also protects against potential future breakages. #[test] fn expr_reachable_subsequent_dangling() { let id = SPair("foo".into(), S2); let toks = vec![ // Reachable Air::OpenExpr(ExprOp::Sum, S1), Air::IdentExpr(id), Air::CloseExpr(S3), // Dangling Air::OpenExpr(ExprOp::Sum, S4), Air::CloseExpr(S5), ]; // The error span should encompass the entire expression. // TODO: ...let's actually have something inside this expression. let second_span = S4.merge(S5).unwrap(); assert_eq!( vec![ Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(second_span))) ], Sut::parse(toks.into_iter()).collect::>(), ); } // Recovery from dangling expression. #[test] fn recovery_expr_reachable_after_dangling() { let id = SPair("foo".into(), S4); let toks = vec![ // Dangling Air::OpenExpr(ExprOp::Sum, S1), Air::CloseExpr(S2), // Reachable, after error from dangling. Air::OpenExpr(ExprOp::Sum, S3), Air::IdentExpr(id), Air::CloseExpr(S5), ]; // The error span should encompass the entire expression. let err_span = S1.merge(S2).unwrap(); let mut sut = Sut::parse(toks.into_iter()); assert_eq!( vec![ Ok(Parsed::Incomplete), Err(ParseError::StateError(AsgError::DanglingExpr(err_span))), // Recovery allows us to continue at this point with the next // expression. Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), Ok(Parsed::Incomplete), ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Let's make sure that we _actually_ added it to the graph, // despite the previous error. let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S3.merge(S5).unwrap()); // The dangling expression may or may not be on the graph, // but it doesn't matter; // we cannot reference it // (unless we break abstraction and walk the underlying graph). // Let's leave this undefined so that we have flexibility in what we // decide to do in the future. // So we end here. } #[test] fn expr_close_unbalanced() { let id = SPair("foo".into(), S3); let toks = vec![ // Close before _any_ open. Air::CloseExpr(S1), // Should recover, // allowing for a normal expr. Air::OpenExpr(ExprOp::Sum, S2), Air::IdentExpr(id), Air::CloseExpr(S4), // And now an extra close _after_ a valid expr. Air::CloseExpr(S5), ]; let mut sut = Sut::parse(toks.into_iter()); assert_eq!( vec![ Err(ParseError::StateError(AsgError::UnbalancedExpr(S1))), // Recovery should allow us to continue. Ok(Parsed::Incomplete), // OpenExpr Ok(Parsed::Incomplete), // IdentExpr Ok(Parsed::Incomplete), // CloseExpr // Another error after a successful expression. Err(ParseError::StateError(AsgError::UnbalancedExpr(S5))), ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Just verify that the expression was successfully added after recovery. let expr = asg.expect_ident_obj::(id); assert_eq!(expr.span(), S2.merge(S4).unwrap()); } #[test] fn expr_bind_to_empty() { let id_noexpr_a = SPair("noexpr_a".into(), S1); let id_good = SPair("noexpr".into(), S3); let id_noexpr_b = SPair("noexpr_b".into(), S5); let toks = vec![ // No open expression to bind to. Air::IdentExpr(id_noexpr_a), // Post-recovery create an expression. Air::OpenExpr(ExprOp::Sum, S2), Air::IdentExpr(id_good), Air::CloseExpr(S4), // Once again we have nothing to bind to. Air::IdentExpr(id_noexpr_b), ]; let mut sut = Sut::parse(toks.into_iter()); assert_eq!( vec![ Err(ParseError::StateError(AsgError::InvalidExprBindContext( id_noexpr_a ))), // Recovery should allow us to continue. Ok(Parsed::Incomplete), // OpenExpr Ok(Parsed::Incomplete), // IdentExpr Ok(Parsed::Incomplete), // CloseExpr // Another error after a successful expression. Err(ParseError::StateError(AsgError::InvalidExprBindContext( id_noexpr_b ))), ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // Neither of the identifiers outside of expressions should exist on the // graph. assert_eq!(None, asg.get_ident_obj::(id_noexpr_a)); assert_eq!(None, asg.get_ident_obj::(id_noexpr_b)); // Verify that the expression was successfully added after recovery. let expr = asg.expect_ident_obj::(id_good); assert_eq!(expr.span(), S2.merge(S4).unwrap()); } // Subexpressions should not only have edges to their parent, // but those edges ought to be ordered, // allowing TAME to handle non-commutative expressions. // We must further understand the relative order in which edges are stored // for non-associative expressions. #[test] fn sibling_subexprs_have_ordered_edges_to_parent() { let id_root = SPair("root".into(), S1); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // Identify the root so that it is not dangling. Air::IdentExpr(id_root), // Sibling A Air::OpenExpr(ExprOp::Sum, S3), Air::CloseExpr(S4), // Sibling B Air::OpenExpr(ExprOp::Sum, S5), Air::CloseExpr(S6), // Sibling C Air::OpenExpr(ExprOp::Sum, S7), Air::CloseExpr(S8), Air::CloseExpr(S9), ]; let asg = asg_from_toks(toks); // The root is the parent expression that should contain edges to each // subexpression // (the siblings above). // Note that we retrieve its _index_, // not the object itself. let oi_root = asg.expect_ident_oi::(id_root); let siblings = oi_root .edges::(&asg) .map(|oi| oi.resolve(&asg)) .collect::>(); // The reversal here is an implementation detail with regards to how // Petgraph stores its edges as effectively linked lists, // using node indices instead of pointers. // It is very important that we understand this behavior. assert_eq!(siblings.len(), 3); assert_eq!(siblings[2].span(), S3.merge(S4).unwrap()); assert_eq!(siblings[1].span(), S5.merge(S6).unwrap()); assert_eq!(siblings[0].span(), S7.merge(S8).unwrap()); } #[test] fn nested_subexprs_related_to_relative_parent() { let id_root = SPair("root".into(), S1); let id_suba = SPair("suba".into(), S2); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), // 0 Air::IdentExpr(id_root), Air::OpenExpr(ExprOp::Sum, S2), // 1 Air::IdentExpr(id_suba), Air::OpenExpr(ExprOp::Sum, S3), // 2 Air::CloseExpr(S4), Air::CloseExpr(S5), Air::CloseExpr(S6), ]; let asg = asg_from_toks(toks); let oi_0 = asg.expect_ident_oi::(id_root); let subexprs_0 = collect_subexprs(&asg, oi_0); // Subexpr 1 assert_eq!(subexprs_0.len(), 1); let (oi_1, subexpr_1) = subexprs_0[0]; assert_eq!(subexpr_1.span(), S2.merge(S5).unwrap()); let subexprs_1 = collect_subexprs(&asg, oi_1); // Subexpr 2 assert_eq!(subexprs_1.len(), 1); let (_, subexpr_2) = subexprs_1[0]; assert_eq!(subexpr_2.span(), S3.merge(S4).unwrap()); } #[test] fn expr_redefine_ident() { // Same identifier but with different spans // (which would be the case in the real world). let id_first = SPair("foo".into(), S2); let id_dup = SPair("foo".into(), S3); let toks = vec![ Air::OpenExpr(ExprOp::Sum, S1), Air::IdentExpr(id_first), Air::OpenExpr(ExprOp::Sum, S3), Air::IdentExpr(id_dup), Air::CloseExpr(S4), Air::CloseExpr(S5), ]; let mut sut = Sut::parse(toks.into_iter()); assert_eq!( vec![ Ok(Parsed::Incomplete), // OpenExpr Ok(Parsed::Incomplete), // IdentExpr (first) Ok(Parsed::Incomplete), // OpenExpr Err(ParseError::StateError(AsgError::IdentRedefine( id_first, id_dup.span(), ))), // RECOVERY: Ignore the attempt to redefine and continue. Ok(Parsed::Incomplete), // CloseExpr Ok(Parsed::Incomplete), // CloseExpr ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // The identifier should continue to reference the first expression. let expr = asg.expect_ident_obj::(id_first); assert_eq!(expr.span(), S1.merge(S5).unwrap()); } // Similar to the above test, // but with two entirely separate expressions, // such that a failure to identify an expression ought to leave it in an // unreachable state. #[test] fn expr_still_dangling_on_redefine() { // Same identifier but with different spans // (which would be the case in the real world). let id_first = SPair("foo".into(), S2); let id_dup = SPair("foo".into(), S5); let id_dup2 = SPair("foo".into(), S8); let id_second = SPair("bar".into(), S9); let toks = vec![ // First expr (OK) Air::OpenExpr(ExprOp::Sum, S1), Air::IdentExpr(id_first), Air::CloseExpr(S3), // Second expr should still dangle due to use of duplicate // identifier Air::OpenExpr(ExprOp::Sum, S4), Air::IdentExpr(id_dup), Air::CloseExpr(S6), // Third expr will error on redefine but then be successful. // This probably won't happen in practice with TAME's original // source language, // but could happen at e.g. a REPL. Air::OpenExpr(ExprOp::Sum, S7), Air::IdentExpr(id_dup2), // fail Air::IdentExpr(id_second), // succeed Air::CloseExpr(S10), ]; let mut sut = Sut::parse(toks.into_iter()); assert_eq!( vec![ Ok(Parsed::Incomplete), // OpenExpr Ok(Parsed::Incomplete), // IdentExpr (first) Ok(Parsed::Incomplete), // CloseExpr // Beginning of second expression Ok(Parsed::Incomplete), // OpenExpr Err(ParseError::StateError(AsgError::IdentRedefine( id_first, id_dup.span(), ))), // RECOVERY: Ignore the attempt to redefine and continue. // ...but then immediately fail _again_ because we've closed a // dangling expression. Err(ParseError::StateError(AsgError::DanglingExpr( S4.merge(S6).unwrap() ))), // RECOVERY: But we'll continue onto one final expression, // which we will fail to define but then subsequently define // successfully. Ok(Parsed::Incomplete), // OpenExpr Err(ParseError::StateError(AsgError::IdentRedefine( id_first, id_dup2.span(), ))), // RECOVERY: Despite the initial failure, // we can now re-attempt to bind with a unique id. Ok(Parsed::Incomplete), // IdentExpr (second) Ok(Parsed::Incomplete), // CloseExpr ], sut.by_ref().collect::>(), ); let asg = sut.finalize().unwrap().into_context(); // The identifier should continue to reference the first expression. let expr = asg.expect_ident_obj::(id_first); assert_eq!(expr.span(), S1.merge(S3).unwrap()); // There's nothing we can do using the ASG's public API at the time of // writing to try to reference the dangling expression. // The second identifier should have been successfully bound despite the // failed initial attempt. let expr = asg.expect_ident_obj::(id_second); assert_eq!(expr.span(), S7.merge(S10).unwrap()); } fn asg_from_toks>(toks: I) -> Asg where I::IntoIter: Debug, { let mut sut = Sut::parse(toks.into_iter()); assert!(sut.all(|x| x.is_ok())); sut.finalize().unwrap().into_context() } fn collect_subexprs( asg: &Asg, oi: ObjectIndex, ) -> Vec<(ObjectIndex, &O)> where O: ObjectRelTo, { oi.edges::(&asg) .map(|oi| (oi, oi.resolve(&asg))) .collect::>() }