This begins generating parsers that are capable of parsing elements. I need
to move on, so this abstraction isn't going to go as far as it could, but
let's see where it takes me.
This was the work that required the recent lookahead changes, which has been
detailed in previous commits.
This initial support is basic, but robust. It supports parsing elements
with attributes and children, but it does not yet support the equivalent of
the Kleene star (`*`). Such support will likely be added by supporting
parsers that are able to recurse on their own definition in tail position,
which will also require supporting parsers that do not add to the stack.
This generates parsers that, like all the other parsers, use enums to
provide a typed stack. Stitched parsers produce a nested stack that is
always bounded in size. Fortunately, expressions---which can nest
deeply---do not need to maintain ancestor context on the stack, and so this
should work fine; we can get away with this because XIRF ensures proper
nesting for us. Statements that _do_ need to maintain such context are not
nested.
This also does not yet support emitting an object on closing tag, which
will be necessary for NIR, which will be a streaming IR that is "near" to
the source XML in structure. This will then be used to lower into AIR for
the ASG, which gives structure needed for further analysis.
More information to come; I just want to get this committed to serve as a
mental synchronization point and clear my head, since I've been sitting on
these changes for so long and have to keep stashing them as I tumble down
rabbit holes covered in yak hair.
DEV-7145
This is the first parser generator for the parsing framework. I've been
waiting quite a while to do this because I wanted to be sure that I
understood how I intended to write the attribute parsers manually. Now that
I'm about to start parsing source XML files, it is necessary to have a
parser generator.
Typically one thinks of a parser generator as a separate program that
generates code for some language, but that is not always the case---that
represents a lack of expressiveness in the language itself (e.g. C). Here,
I simply use Rust's macro system, which should be a concept familiar to
someone coming from a language like Lisp.
This also resolves where I stand on parser combinators with respect to this
abstraction: they both accomplish the exact same thing (composition of
smaller parsers), but this abstraction doesn't do so in the typical
functional way. But the end result is the same.
The parser generated by this abstraction will be optimized an inlined in the
same manner as the hand-written parsers. Since they'll be tightly coupled
with an element parser (which too will have a parser generator), I expect
that most attribute parsers will simply be inlined; they exist as separate
parsers conceptually, for the same reason that you'd use parser combinators.
It's worth mentioning that this awkward reliance on dead state for a
lookahead token to determine when aggregation is complete rubs me the wrong
way, but resolving it would involve reintroducing the XIR AttrEnd that I had
previously removed. I'll keep fighting with myself on this, but I want to
get a bit further before I determine if it's worth the tradeoff of
reintroducing (more complex IR but simplified parsing).
DEV-7145
The parsing framework originally created for XIR is now more general and
useful to other things. We'll see how this evolves.
This needs additional documentation, but I'd like to see how it changes as
I implement XmloReader and then some of the source readers first.
DEV-10863
This adds a `Token` type to `ParseState`. Everything uses `xir::Token`
currently, but `XmloReader` will use `xir::flat::Object`.
Now that this has been generalized beyond XIR, the parser ought to be
hoisted up a level.
DEV-10863
I'm not rendering errors yet in practice, so this wouldn't have been
noticed, but we want error messages to reference the final byte in a file on
EOF, not the offset of the last-encountered token, which would be confusing.
This doesn't _directly_ pertain to what I'm working on; I just happened to
notice it.
DEV-10863
XIRF introduced the concept of `Transition` to help document code and
provide mental synchronization points that make it easier to reason about
the system. I decided to hoist this into XIR's parser itself, and have
`parse_token` accept an owned state and require a new state to be returned,
utilizing `Transition`.
Together with the convenience methods introduced on `Transition` itself,
this produces much clearer code, as is evidenced by tree::Stack (XIRT's
parser). Passing an owned state is something that I had wanted to do
originally, but I thought it'd lead to more concise code to use a mutable
reference. Unfortunately, that concision lead to code that was much more
difficult than necessary to understand, and ended up having a net negative
benefit by leading to some more boilerplate for the nested types (granted,
that could have been alleviated in other ways).
This also opens up the possibility to do something that I wasn't able to
before, which was continue to abstract away parser composition by stitching
their state machines together. I don't know if this'll be done immediately,
but because the actual parsing operations are now able to compose
functionally without mutability getting the way, the previous state coupling
issues with the parent parser go away.
DEV-10863
It's a bit odd that I've done next to nothing with TAMER for the past week
or so, and decided to do this one small thing before I go on break for the
holidays, but I felt compelled to do _something_. Besides, this gets me in
a better spot for the inevitable mental planning and writing I'll be doing
over the holidays.
This move was natural, given what this has evolved into---it has nothing to
do with the concept of a "tree", and the modules imports emphasized that
fact given the level of inappropriate nesting.