This commit is purposefully coupled with changes that utilize it to
demonstrate that the need for this abstraction has been _derived_, not
forced; TAMER doesn't aim to be functional for the sake of it, since
idiomatic Rust achieves many of its benefits without the formalisms.
But, the formalisms do occasionally help, and this is one such
example. There is other existing code that can be refactored to take
advantage of this style as well.
I do _not_ wish to pull an existing functional dependency into TAMER; I want
to keep these abstractions light, and eliminate them as necessary, as Rust
continues to integrate new features into its core. I also want to be able
to modify the abstractions to suit our particular needs. (This is _not_ a
general recommendation; it's particular to TAMER and to my experience.)
This implementation of `Functor` is one such example. While it is modeled
after Haskell in that it provides `fmap`, the primitive here is instead
`map`, with `fmap` derived from it, since `map` allows for better use of
Rust idioms. Furthermore, it's polymorphic over _trait_ type parameters,
not method, allowing for separate trait impls for different container types,
which can in turn be inferred by Rust and allow for some very concise
mapping; this is particularly important for TAMER because of the disciplined
use of newtypes.
For example, `foo.overwrite(span)` and `foo.overwrite(name)` are both
self-documenting, and better alternatives than, say, `foo.map_span(|_|
span)` and `foo.map_symbol(|_| name)`; the latter are perfectly clear in
what they do, but lack a layer of abstraction, and are verbose. But the
clarity of the _new_ form does rely on either good naming conventions of
arguments, or explicit type annotations using turbofish notation if
necessary.
This will be implemented on core Rust types as appropriate and as
possible. At the time of writing, we do not yet have trait specialization,
and there's too many soundness issues for me to be comfortable enabling it,
so that limits that we can do with something like, say, a generic `Result`,
while also allowing for specialized implementations based on newtypes.
DEV-13160
This makes the system a bit more ergonomic and introduces additional type
safety by associating the narrowed object type with the
`ObjectIndex` (previously `ObjectRef`). Not only does this allow us to
explicitly state the type of object wherever those indices are stored, but
it also allows the API to automatically narrow to that type when operating
on it again without the caller having to worry about it.
DEV-13160
This begins to place expressions on the graph---something that I've been
thinking about for a couple of years now, so it's interesting to finally be
doing it.
This is going to evolve; I want to get some things committed so that it's
clear how I'm moving forward. The ASG makes things a bit awkward for a
number of reasons:
1. I'm dealing with older code where I had a different model of doing
things;
2. It's mutable, rather than the mostly-functional lowering pipeline;
3. We're dealing with an aggregate ever-evolving blob of data (the graph)
rather than a stream of tokens; and
4. We don't have as many type guarantees.
I've shown with the lowering pipeline that I'm able to take a mutable
reference and convert it into something that's both functional and
performant, where I remove it from its container (an `Option`), create a new
version of it, and place it back. Rust is able to optimize away the memcpys
and such and just directly manipulate the underlying value, which is often a
register with all of the inlining.
_But_ this is a different scenario now. The lowering pipeline has a narrow
context. The graph has to keep hitting memory. So we'll see how this
goes. But it's most important to get this working and measure how it
performs; I'm not trying to prematurely optimize. My attempts right now are
for the way that I wish to develop.
Speaking to #4 above, it also sucks that I'm not able to type the
relationships between nodes on the graph. Rather, it's not that I _can't_,
but a project to created a typed graph library is beyond the scope of this
work and would take far too much time. I'll leave that to a personal,
non-work project. Instead, I'm going to have to narrow the type any time
the graph is accessed. And while that sucks, I'm going to do my best to
encapsulate those details to make it as seamless as possible API-wise. The
performance hit of performing the narrowing I'm hoping will be very small
relative to all the business logic going on (a single cache miss is bound to
be far more expensive than many narrowings which are just integer
comparisons and branching)...but we'll see. Introducing branching sucks,
but branch prediction is pretty damn good in modern CPUs.
DEV-13160
This ASG implementation is a refactored form of original code from the
proof-of-concept linker, which was well before the span and diagnostic
implementations, and well before I knew for certain how I was going to solve
that problem.
This was quite the pain in the ass, but introduces spans to the AIR tokens
and graph so that we always have useful diagnostic information. With that
said, there are some important things to note:
1. Linker spans will originate from the `xmlo` files until we persist
spans to those object files during `tamec`'s compilation. But it's
better than nothing.
2. Some additional refactoring is still needed for consistency, e.g. use
of `SPair`.
3. This is just a preliminary introduction. More refactoring will come as
tamec is continued.
DEV-13041
This newtype allows a caller to prove (using types) that a parser of a given
type (`ParseState`) has been finalized.
This will be used by the lowering pipeline to ensure that all parsers in the
pipeline end up getting finalized (as you can see from a TODO added in the
code, one of them is missing). The lack of such a type was an oversight
during the (rather stressed) development of the parsing system, and I
shouldn't need to resort to unit tests to verify that parsers have been
finalized.
DEV-13158
This was accepting an early EOF when the active child `ParseState` was in an
accepting state, because it was not ensuring that anything on the stack was
also accepting.
Ideally, there should be nothing on the stack, and hopefully in the future
that's what happens. But with how things are today, it's important that, if
anything is on the stack, it is accepting.
Since `is_accepting` on the superstate is only called during finalization,
and because the check terminates early, and because the stack practically
speaking will only have a couple things on it max (unless we're in tail
position in a deeply nested tree, without TCO [yet]), this shouldn't be an
expensive check.
Implementing this did require that we expose `Context` to `is_accepting`,
which I had hoped to avoid having to do, but here we are.
DEV-7145
This produces useful parse traces that are output as part of a failing test
case. The parser generator macros can be a bit confusing to deal with when
things go wrong, so this helps to clarify matters.
This is _not_ intended to be machine-readable, but it does show that it
would be possible to generate machine-readable output to visualize the
entire lowering pipeline. Perhaps something for the future.
I left these inline in Parser::feed_tok because they help to elucidate what
is going on, just by reading what the trace would output---that is, it helps
to make the method more self-documenting, albeit a tad bit more
verbose. But with that said, it should probably be extracted at some point;
I don't want this to set a precedent where composition is feasible.
Here's an example from test cases:
[Parser::feed_tok] (input IR: XIRF)
| ==> Parser before tok is parsing attributes for `package`.
| | Attrs_(SutAttrsState_ { ___ctx: (QName(None, LocalPart(NCName(SymbolId(46 "package")))), OpenSpan(Span { len: 0, offset: 0, ctx: Context(SymbolId(1 "#!DUMMY")) }, 10)), ___done: false })
|
| ==> XIRF tok: `<unexpected>`
| | Open(QName(None, LocalPart(NCName(SymbolId(82 "unexpected")))), OpenSpan(Span { len: 0, offset: 1, ctx: Context(SymbolId(1 "#!DUMMY")) }, 10), Depth(1))
|
| ==> Parser after tok is expecting opening tag `<classify>`.
| | ChildA(Expecting_)
| | Lookahead: Some(Lookahead(Open(QName(None, LocalPart(NCName(SymbolId(82 "unexpected")))), OpenSpan(Span { len: 0, offset: 1, ctx: Context(SymbolId(1 "#!DUMMY")) }, 10), Depth(1))))
= note: this trace was output as a debugging aid because `cfg(test)`.
[Parser::feed_tok] (input IR: XIRF)
| ==> Parser before tok is expecting opening tag `<classify>`.
| | ChildA(Expecting_)
|
| ==> XIRF tok: `<unexpected>`
| | Open(QName(None, LocalPart(NCName(SymbolId(82 "unexpected")))), OpenSpan(Span { len: 0, offset: 1, ctx: Context(SymbolId(1 "#!DUMMY")) }, 10), Depth(1))
|
| ==> Parser after tok is attempting to recover by ignoring element with unexpected name `unexpected` (expected `classify`).
| | ChildA(RecoverEleIgnore_(QName(None, LocalPart(NCName(SymbolId(82 "unexpected")))), OpenSpan(Span { len: 0, offset: 1, ctx: Context(SymbolId(1 "#!DUMMY")) }, 10), Depth(1)))
| | Lookahead: None
= note: this trace was output as a debugging aid because `cfg(test)`.
DEV-7145
This finally uses `parse` all the way up to aggregation into the ASG, as can
be seen by the mess in `poc`. This will be further simplified---I just need
to get this committed so that I can mentally get it off my plate. I've been
separating this commit into smaller commits, but there's a point where it's
just not worth the effort anymore. I don't like making large changes such
as this one.
There is still work to do here. First, it's worth re-mentioning that
`poc` means "proof-of-concept", and represents things that still need a
proper home/abstraction.
Secondly, `poc` is retrieving the context of two parsers---`LowerContext`
and `Asg`. The latter is desirable, since it's the final aggregation point,
but the former needs to be eliminated; in particular, packages need to be
worked into the ASG so that `found` can be removed.
Recursively loading `xmlo` files still happens in `poc`, but the compiler
will need this as well. Once packages are on the ASG, along with their
state, that responsibility can be generalized as well.
That will then simplify lowering even further, to the point where hopefully
everything has the same shape (once final aggregation has an abstraction),
after which we can then create a final abstraction to concisely stitch
everything together. Right now, Rust isn't able to infer `S` for
`Lower<S, LS>`, which is unfortunate, but we'll be able to help it along
with a more explicit abstraction.
DEV-11864