This is a working concept that will continue to evolve. I wanted to start
with some basic output before getting too carried away, since there's a lot
of potential here.
This is heavily influenced by Rust's helpful diagnostic messages, but will
take some time to realize a lot of the things that Rust does. The next step
will be to resolve line and column numbers, and then possibly include
snippets and underline spans, placing the labels alongside them. I need to
balance this work with everything else I have going on.
This is a large commit, but it converts the existing Error Display impls
into Diagnostic. This separation is a bit verbose, so I'll see how this
ends up evolving.
Diagnostics are tied to Error at the moment, but I imagine in the future
that any object would be able to describe itself, error or not, which would
be useful in the future both for the Summary Page and for query
functionality, to help developers understand the systems they are writing
using TAME.
Output is integrated into tameld only in this commit; I'll add tamec
next. Examples of what this outputs are available in the test cases in this
commit.
DEV-10935
This resolves the performance issues caused by Rust's failure to elide the
ElementStack (ArrayVec) memcpys on move.
Since XIRF is invoked tens of millions of times in some cases for larger
systems, prior to this change, failure to optimize away moves for XIRF
resulted in tens of millions of memcpys. This resulted in linking of one
program going from 1s -> ~15s. This change reduces it to ~2.5s with the
wip-xmlo-xir-reader flag on, with the extra time coming from elsewhere (the
subject of future changes).
In particular, this change introduces a new mutable reference to
`ParseState::parse_token`, which is a reference to a `Context` owned by the
caller (e.g. `Parser`). In the case of XIRF, this means that
`Parser<flat::State, _>` will own the `ElementStack`/`ArrayVec` instead of
`flat::State`; this allows the latter to remain pure and benefit from Rust's
move optimizations, without sacrificing the otherwise-pure implementation.
ParseStates that do not need a mutable context can use `NoContext` and
remain pure.
DEV-12024
This introduces a new method similar to the previous `delegate`, but with
another closure that allows for handling lookahead tokens from the child
parser.
Admittedly, this isn't exactly what I was going for---a list of arguments
isn't exactly self-documenting, especially with the brevity when the
arguments line up---but this was easy to do and so I'll run with this for
now.
This also modified `delegate` to accept a context, even though it wasn't
necessary, both for consistency with its lookup counterpart and for brevity
with the `into` argument (allowing, in our case, to just pass the name of
the variant, rather than a closure).
I'm not going to handle the actual starting and accepting state stitching
abstraction for now; I'd like to observe future boilerplate more before I
consider the best way to handle it, though I do have some ideas.
DEV-10863
This does some cleanup and adds `parse::Object` for use in disambiguating
`From` for `ParseStatus`, allowing the `Transition` API to be much more
flexible in the data it accepts and automatically converts. This allows us
to concisely provide raw output data to be wrapped, or provide `ParseStatus`
directly when more convenient.
There aren't yet examples in the docs; I'll do so once I make sure this API
is actually utilized as intended.
DEV-10863
This replaces u8 and will be used for the new XmloReader.
Previously I wasn't sure what direction TAMER was going to go in with
regards to dimensionality, but I do not expect that higher dimensions will
be supported, and if they are, they'd very likely compile down to lower ones
and create an illusion of higher-dimensionality.
Whatever the future holds, it's not used today, and I'd rather these types
be correct.
ASG needs changing too, but one step at a time.
DEV-10863
This converts the tuple type alias into a newtype, so that we may provide
our own implementations.
This differs from a previous approach that I took, which involved making
this type `Result<(S, T), (S, E)>` so that the return values composed well
with other functions. But the reality is that this is used only by other
`ParseState`s and `Parser`, so it's unnecessary.
However, this is also an attempt to utilize the new Try and FromResidual
traits; note how the Try associated types match precisely what I was trying
to do before, though they're used as intermediate types. I'll see how this
evolves.
DEV-10863
This allows the Results to compose and, importantly, is compatible with
`?` without having to put in any extra effort.
This makes puts the caller in an awkward spot, so I introduced a utility
function `result_tup0_invert` for now; we'll see if that stays or evolves
differently.
DEV-10863
This begins to transition XmloReader into a ParseState. Unlike previous
changes where ParseStates were composed into a single ParseState, this is
instead a lowering operation that will take the output of one Parser and
provide it to another.
The mess in ld::poc (...which still needs to be refactored and removed)
shows the concept, which will be abstracted away. This won't actually get
to the ASG in order to test that that this works with the
wip-xmlo-xir-reader flag on (development hasn't gotten that far yet), but
since it type-checks, it should conceptually work.
Wiring lowering operations together is something that I've been dreading for
months, but my approach of only abstracting after-the-fact has helped to
guide a sane approach for this. For some definition of "sane".
It's also worth noting that AsgBuilder will too become a ParseState
implemented as another lowering operation, so:
XIR -> XIRF -> XMLO -> ASG
These steps will all be streaming, with iteration happening only at the
topmost level. For this reason, it's important that ASG not be responsible
for doing that pull, and further we should propagate Parsed::Incomplete
rather than filtering it out and looping an indeterminate number of times
outside of the toplevel.
One final note: the choice of 64 for the maximum depth is entirely
arbitrary and should be more than generous; it'll be finalized at some point
in the future once I actually evaluate what maximum depth is reasonable
based on how the system is used, with some added growing room.
DEV-10863
The parsing framework originally created for XIR is now more general and
useful to other things. We'll see how this evolves.
This needs additional documentation, but I'd like to see how it changes as
I implement XmloReader and then some of the source readers first.
DEV-10863
This adds a `Token` type to `ParseState`. Everything uses `xir::Token`
currently, but `XmloReader` will use `xir::flat::Object`.
Now that this has been generalized beyond XIR, the parser ought to be
hoisted up a level.
DEV-10863
This does a couple of things: it ensures that documents one and only one
root note, and it properly handles dead transitions once parsing is
complete (allowing it to be composed).
This should make XIRF feature-complete for the time being. It does rely on
the assumption that the reader is stripping out any trailing whitespace, so
I guess we'll see if that's true as we proceed.
DEV-10863
XIRF introduced the concept of `Transition` to help document code and
provide mental synchronization points that make it easier to reason about
the system. I decided to hoist this into XIR's parser itself, and have
`parse_token` accept an owned state and require a new state to be returned,
utilizing `Transition`.
Together with the convenience methods introduced on `Transition` itself,
this produces much clearer code, as is evidenced by tree::Stack (XIRT's
parser). Passing an owned state is something that I had wanted to do
originally, but I thought it'd lead to more concise code to use a mutable
reference. Unfortunately, that concision lead to code that was much more
difficult than necessary to understand, and ended up having a net negative
benefit by leading to some more boilerplate for the nested types (granted,
that could have been alleviated in other ways).
This also opens up the possibility to do something that I wasn't able to
before, which was continue to abstract away parser composition by stitching
their state machines together. I don't know if this'll be done immediately,
but because the actual parsing operations are now able to compose
functionally without mutability getting the way, the previous state coupling
issues with the parent parser go away.
DEV-10863
This introduces XIR Flat (XIRF), which is conceptually between XIR and
XIRT. This provides a more appropriate level of abstraction for further
lowering operations to parse against, and removes the need for other parsers
to perform their own validations (inappropriately) to ensure well-formed
XML.
There is still some cleanup worth doing, including moving some of the
parsing responsibility up a level back into the XIR parser.
DEV-10863