design/tpl (Classification System): Introduce linear algebra notation
I find this provides a visualization that is likely to be significantly more intuitive for others. It even holds when the matrix is not rectangular (yes, I know, it's not really a matrix then), so long as all matrices share the same respective K_j.master
parent
cc057e8178
commit
ddcdb8d9c6
|
@ -570,6 +570,117 @@ More subtly,
|
|||
\label{f:ex:class-match-all-ranks}
|
||||
\end{figure}
|
||||
|
||||
Visually,
|
||||
the one-dimensional construction of \axmref{class-pred} does not lend
|
||||
itself well to how intuitive the behavior of the system actually is.
|
||||
We therefore establish a relationship to the notation of linear algebra
|
||||
to emphasize the relationship between each of the inputs.
|
||||
|
||||
\newcommand\matseqsup[1]{%
|
||||
\begin{bmatrix}
|
||||
M^{#1}_{0_0} & \dots & M^{#1}_{0_k} \\
|
||||
\vdots & \ddots & \vdots \\
|
||||
M^{#1}_{j_0} & \dots & M^{#1}_{j_k} \\
|
||||
\end{bmatrix}%
|
||||
}
|
||||
\newcommand\vecseqsup[1]{%
|
||||
\begin{bmatrix}
|
||||
v^{#1}_0 \\
|
||||
\vdots \\
|
||||
v^{#1}_j \\
|
||||
\end{bmatrix}%
|
||||
}
|
||||
|
||||
% This must be an axiom because it defines how the connectives operate; see
|
||||
% the remark.
|
||||
\begin{axiom}[Classification Matrix Notation]\axmlabel{class-mat-not}
|
||||
Let $\Gamma^2$ be defined by \axmref{class-yield}.
|
||||
Then,
|
||||
\begin{equation*}
|
||||
\Gamma^2 =
|
||||
\matseqsup{0}\monoidops\matseqsup{l}
|
||||
\monoidop
|
||||
\vecseqsup{0}\monoidops\vecseqsup{m}
|
||||
\monoidop
|
||||
s^0\monoidops s^n,
|
||||
\end{equation*}
|
||||
from which $\Gamma^1$, $\Gamma^0$, and $\gamma$ can be derived.
|
||||
\end{axiom}
|
||||
|
||||
\begin{remark}[Logical Connectives With Matrix Notation]
|
||||
From the definition of \axmref{class-mat-not},
|
||||
it should be clear that the logical connective $\monoidop$ necessarily
|
||||
acts like a Hadamard product with regards to how individual elements are
|
||||
combined.
|
||||
\end{remark}
|
||||
|
||||
\axmref{class-mat-not} makes it easy to visualize classification
|
||||
operations simply by drawing horizontal boxes across the predicates,
|
||||
as demonstrated by \spref{f:class-mat-boxes}.
|
||||
|
||||
% NB: Give this formatting extra attention if the document's formatting is
|
||||
% substantially changed, since it's not exactly responsible with it's
|
||||
% hard-coded units.
|
||||
\begingroup
|
||||
\begin{figure}[ht]
|
||||
\def\classmatraise#1{%
|
||||
\begin{aligned}
|
||||
#1 \\ {} \\ #1
|
||||
\end{aligned}
|
||||
}
|
||||
\def\classmateq{%
|
||||
\matseqsup{0}
|
||||
\classmatraise{\monoidop\cdots\monoidop}
|
||||
\matseqsup{l}
|
||||
\classmatraise\monoidop
|
||||
\vecseqsup{0}
|
||||
\classmatraise{\monoidop\cdots\monoidop}
|
||||
\vecseqsup{m}
|
||||
\classmatraise{%
|
||||
{}\monoidop s^0\monoidop\cdots\monoidop s^n%
|
||||
}
|
||||
}
|
||||
|
||||
\begin{align*}
|
||||
&\;\raisebox{-3mm}[0mm]{%
|
||||
\begin{turn}{45}
|
||||
$\equiv$
|
||||
\end{turn}%
|
||||
} \;\fbox{$
|
||||
\left(M^0_{0_0} \monoidops M^0_{0_k}\right)
|
||||
\monoidops
|
||||
\left(M^l_{0_0} \monoidops M^l_{0_k}\right)
|
||||
\monoidop
|
||||
v^0_0 \monoidops v^m_0
|
||||
\monoidop
|
||||
s^0 \monoidops s^n
|
||||
$} &\Gamma^2_0 \\[-2mm]
|
||||
&\fbox{\raisebox{0mm}[0mm][6mm]{\hphantom{$\classmateq$}}} \\[-8mm]
|
||||
%
|
||||
&\classmateq &\vdots\; \\[-10mm]
|
||||
%
|
||||
&\fbox{\raisebox{0mm}[0mm][6mm]{\hphantom{$\classmateq$}}} \\
|
||||
&\;\raisebox{3mm}[0mm]{%
|
||||
\begin{turn}{-45}
|
||||
$\equiv$
|
||||
\end{turn}%
|
||||
} \;\fbox{$
|
||||
\left(M^0_{j_0} \monoidops M^0_{j_k}\right)
|
||||
\monoidops
|
||||
\left(M^l_{j_0} \monoidops M^l_{j_k}\right)
|
||||
\monoidop
|
||||
v^0_j \monoidops v^m_j
|
||||
\monoidop
|
||||
s^0 \monoidops s^n
|
||||
$} &\Gamma^2_j
|
||||
\end{align*}
|
||||
\caption{Visual interpretation of classification by \axmref{class-mat-not}.
|
||||
The adjacent frames represent equivalencies between the first-order
|
||||
logic of \axmref{class-yield} and the matrix notation.}
|
||||
\label{f:class-mat-boxes}
|
||||
\end{figure}
|
||||
\endgroup
|
||||
|
||||
\index{classification!as proposition|(}
|
||||
\begin{lemma}[Match As Proposition]\lemlabel{match-prop}
|
||||
Matches can be represented using propositional logic provided that
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
\usepackage{marginnote} % Notes in the margin
|
||||
\usepackage{ccicons} % CC license icons
|
||||
\usepackage{manfnt} % Dangerous Bend symbols
|
||||
\usepackage{rotating} % Rotating objects
|
||||
|
||||
|
||||
|
||||
|
@ -123,6 +124,8 @@
|
|||
|
||||
% Group theory
|
||||
\newcommand\Monoid[3]{\left({#1},{#2},{#3}\right)}
|
||||
\let\monoidop\bullet
|
||||
\newcommand\monoidops{\monoidop\cdots\monoidop}
|
||||
|
||||
% Closed binary function
|
||||
\newcommand\cbif[1]{#1\times#1\rightarrow#1}
|
||||
|
|
Loading…
Reference in New Issue