design/tpl (Matches): Clean up matrix visualization
The previous design was a tad bit too noisy and I think undermined the whole point of the visualization: to help grok the matching logic.master
parent
9c72d397d4
commit
3cf859e72a
|
@ -676,41 +676,41 @@ This visualization helps to show intuitively how the classification system
|
|||
}
|
||||
|
||||
\begin{align*}
|
||||
&\;\raisebox{-3mm}[0mm]{%
|
||||
&\quad\raisebox{-3mm}[0mm]{%
|
||||
\begin{turn}{45}
|
||||
$\equiv$
|
||||
\end{turn}%
|
||||
} \;\fbox{$
|
||||
\left(M^0_{0_0} \monoidops M^0_{0_k}\right)
|
||||
\monoidops
|
||||
\left(M^l_{0_0} \monoidops M^l_{0_k}\right)
|
||||
\monoidop
|
||||
v^0_0 \monoidops v^m_0
|
||||
\monoidop
|
||||
s^0 \monoidops s^n
|
||||
$} &\Gamma^2_0 \\[-2mm]
|
||||
}
|
||||
\left(M^0_{0_0} \monoidops M^0_{0_k}\right)
|
||||
\monoidops
|
||||
\left(M^l_{0_0} \monoidops M^l_{0_k}\right)
|
||||
\monoidop
|
||||
v^0_0 \monoidops v^m_0
|
||||
\monoidop
|
||||
s^0 \monoidops s^n
|
||||
&\Gamma^2_0 \\[-2mm]
|
||||
&\fbox{\raisebox{0mm}[0mm][6mm]{\hphantom{$\classmateq$}}} \\[-8mm]
|
||||
%
|
||||
&\classmateq &\vdots\; \\[-10mm]
|
||||
%
|
||||
&\fbox{\raisebox{0mm}[0mm][6mm]{\hphantom{$\classmateq$}}} \\
|
||||
&\;\raisebox{3mm}[0mm]{%
|
||||
&\quad\raisebox{3mm}[0mm]{%
|
||||
\begin{turn}{-45}
|
||||
$\equiv$
|
||||
\end{turn}%
|
||||
} \;\fbox{$
|
||||
\left(M^0_{j_0} \monoidops M^0_{j_k}\right)
|
||||
\monoidops
|
||||
\left(M^l_{j_0} \monoidops M^l_{j_k}\right)
|
||||
\monoidop
|
||||
v^0_j \monoidops v^m_j
|
||||
\monoidop
|
||||
s^0 \monoidops s^n
|
||||
$} &\Gamma^2_j
|
||||
}
|
||||
\left(M^0_{j_0} \monoidops M^0_{j_k}\right)
|
||||
\monoidops
|
||||
\left(M^l_{j_0} \monoidops M^l_{j_k}\right)
|
||||
\monoidop
|
||||
v^0_j \monoidops v^m_j
|
||||
\monoidop
|
||||
s^0 \monoidops s^n
|
||||
&\Gamma^2_j
|
||||
\end{align*}
|
||||
\caption{Visual interpretation of classification by \axmref{class-mat-not}.
|
||||
The adjacent frames represent equivalencies between the first-order
|
||||
logic of \axmref{class-yield} and the matrix notation.}
|
||||
For each boxed row of the matrix notation there is an equivalence
|
||||
to the first-order logic of \axmref{class-yield}.}
|
||||
\label{f:class-mat-boxes}
|
||||
\end{figure}
|
||||
\endgroup
|
||||
|
|
Loading…
Reference in New Issue