170 lines
3.4 KiB
TeX
170 lines
3.4 KiB
TeX
|
% The TAME Programming Language glossary
|
||
|
%
|
||
|
% Copyright (C) 2021 Ryan Specialty Group, LLC.
|
||
|
%
|
||
|
% Licensed under the Creative Commons Attribution-ShareAlike 4.0
|
||
|
% International License.
|
||
|
%%
|
||
|
|
||
|
\makeglossaries
|
||
|
|
||
|
\newacronym{tamer}{\textsc{Tamer}}{\tame{} in Rust}
|
||
|
|
||
|
\newglossaryentry{classification}
|
||
|
{
|
||
|
name={classification},
|
||
|
description={TODO}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{free variable}
|
||
|
{
|
||
|
name={free variable},
|
||
|
description={a variable that is not a \gls{bound variable}}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{bound variable}
|
||
|
{
|
||
|
name={bound variable},
|
||
|
description={}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{predicate}
|
||
|
{
|
||
|
name={predicate},
|
||
|
description={}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{boolean}
|
||
|
{
|
||
|
name={boolean},
|
||
|
description={a value of \gls{true} or \gls{false}},
|
||
|
symbol={\Bool},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{true}
|
||
|
{
|
||
|
name={true},
|
||
|
description={boolean value representing ``true''},
|
||
|
symbol={\true},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{false}
|
||
|
{
|
||
|
name={false},
|
||
|
description={boolean value representing ``false''},
|
||
|
symbol={\false},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{conjunction}
|
||
|
{
|
||
|
name={conjunction},
|
||
|
description={logical conjunction (``and'')},
|
||
|
symbol={\ensuremath{\logand}},
|
||
|
}
|
||
|
\newglossaryentry{disjunction}
|
||
|
{
|
||
|
name={disjunction},
|
||
|
description={logical disjunction (``or'')},
|
||
|
symbol={\ensuremath{\logor}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{cardinality}
|
||
|
{
|
||
|
name={cardinality},
|
||
|
description={number of elements in some set~$S$},
|
||
|
symbol={\ensuremath{|S|}}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{family}
|
||
|
{
|
||
|
name={family},
|
||
|
description={a set sharing the same \gls{index set}},
|
||
|
symbol={\ensuremath{\{A_j\}_{j\in J}}}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{index set}
|
||
|
{
|
||
|
name={index set},
|
||
|
description={a set whose members index members of another set; see also
|
||
|
\gls{family}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{castable}
|
||
|
{
|
||
|
name={castable},
|
||
|
description={type $A$ is castable to type $B$ if there exists some
|
||
|
\gls{surjective} function $A\rightarrow B$}
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{surjective}
|
||
|
{
|
||
|
name={surjective},
|
||
|
description={$\forall y\in Y : \exists x\in X : f(x) = y$},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{equivalent}
|
||
|
{
|
||
|
name={equivalent},
|
||
|
description={an equivalence relation is a reflexive, symmetric, and
|
||
|
transitive binary operation},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{logical equivalence}
|
||
|
{
|
||
|
name={logical equivalence},
|
||
|
description={$p$ and $q$ are logically equivalent ($p\equiv q$) \gls{iff}
|
||
|
both $q$ and~$p$ are~\true or both are~\false},
|
||
|
symbol={\ensuremath{\equiv}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{logical implication}
|
||
|
{
|
||
|
name={logical implication},
|
||
|
description={},
|
||
|
symbol={\ensuremath{\implies}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{iff}
|
||
|
{
|
||
|
name={iff},
|
||
|
description={if and only if},
|
||
|
symbol={\ensuremath{\iff}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{forall}
|
||
|
{
|
||
|
name={universal quantification},
|
||
|
description={expresses a predicate that must be satisfied for every
|
||
|
element in a \gls{domain}},
|
||
|
symbol={\ensuremath{\forall}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{exists}
|
||
|
{
|
||
|
name={existential quantification},
|
||
|
description={expresses a predicate that must be satisfied for some
|
||
|
element in a \gls{domain}},
|
||
|
symbol={\ensuremath{\exists}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{domain}
|
||
|
{
|
||
|
name={domain of discourse},
|
||
|
description={set of elements over which variables of interest may range},
|
||
|
symbol={\ensuremath{\mathbb{D}}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{integer}
|
||
|
{
|
||
|
name={integer},
|
||
|
description={set of all integers},
|
||
|
symbol={\ensuremath{\mathbb{Z}}},
|
||
|
}
|
||
|
|
||
|
\newglossaryentry{empty set}
|
||
|
{
|
||
|
name={empty set},
|
||
|
description={set of zero elements},
|
||
|
symbol={\ensuremath{\emptyset}}
|
||
|
}
|