633 lines
19 KiB
JavaScript
633 lines
19 KiB
JavaScript
/**
|
|
* Provides system for code reuse via traits
|
|
*
|
|
* Copyright (C) 2014 Mike Gerwitz
|
|
*
|
|
* This file is part of GNU ease.js.
|
|
*
|
|
* ease.js is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
var AbstractClass = require( __dirname + '/class_abstract' ),
|
|
ClassBuilder = require( __dirname + '/ClassBuilder' );
|
|
|
|
|
|
function Trait()
|
|
{
|
|
switch ( arguments.length )
|
|
{
|
|
case 1:
|
|
return Trait.extend.apply( this, arguments );
|
|
break;
|
|
|
|
case 2:
|
|
return createNamedTrait.apply( this, arguments );
|
|
break;
|
|
|
|
default:
|
|
throw Error( "Missing trait name or definition" );
|
|
}
|
|
};
|
|
|
|
|
|
/**
|
|
* Create a named trait
|
|
*
|
|
* @param {string} name trait name
|
|
* @param {Object} def trait definition
|
|
*
|
|
* @return {Function} named trait
|
|
*/
|
|
function createNamedTrait( name, dfn )
|
|
{
|
|
if ( arguments.length > 2 )
|
|
{
|
|
throw Error(
|
|
"Expecting at most two arguments for definition of named " +
|
|
"Trait " + name + "'; " + arguments.length + " given"
|
|
);
|
|
}
|
|
|
|
if ( typeof name !== 'string' )
|
|
{
|
|
throw Error(
|
|
"First argument of named class definition must be a string"
|
|
);
|
|
}
|
|
|
|
dfn.__name = name;
|
|
|
|
return Trait.extend( dfn );
|
|
}
|
|
|
|
|
|
Trait.extend = function( dfn )
|
|
{
|
|
// we may have been passed some additional metadata
|
|
var meta = this.__$$meta || {};
|
|
|
|
// store any provided name, since we'll be clobbering it (the definition
|
|
// object will be used to define the hidden abstract class)
|
|
var name = dfn.__name || '(Trait)';
|
|
|
|
// we need at least one abstract member in order to declare a class as
|
|
// abstract (in this case, our trait class), so let's create a dummy one
|
|
// just in case DFN does not contain any abstract members itself
|
|
dfn[ 'abstract protected ___$$trait$$' ] = [];
|
|
|
|
// augment the parser to handle our own oddities
|
|
dfn.___$$parser$$ = {
|
|
each: _parseMember,
|
|
property: _parseProps,
|
|
};
|
|
|
|
// give the abstract trait class a distinctive name for debugging
|
|
dfn.__name = '#AbstractTrait#';
|
|
|
|
function TraitType()
|
|
{
|
|
throw Error( "Cannot instantiate trait" );
|
|
};
|
|
|
|
// implement interfaces if indicated
|
|
var base = AbstractClass;
|
|
if ( meta.ifaces )
|
|
{
|
|
base = base.implement.apply( null, meta.ifaces );
|
|
}
|
|
|
|
// and here we can see that traits are quite literally abstract classes
|
|
var tclass = base.extend( dfn );
|
|
|
|
TraitType.__trait = true;
|
|
TraitType.__acls = tclass;
|
|
TraitType.__ccls = null;
|
|
TraitType.toString = function()
|
|
{
|
|
return ''+name;
|
|
};
|
|
|
|
// invoked to trigger mixin
|
|
TraitType.__mixin = function( dfn, tc, base )
|
|
{
|
|
mixin( TraitType, dfn, tc, base );
|
|
};
|
|
|
|
// mixes in implemented types
|
|
TraitType.__mixinImpl = function( dest_meta )
|
|
{
|
|
mixinImpl( tclass, dest_meta );
|
|
};
|
|
|
|
return TraitType;
|
|
};
|
|
|
|
|
|
/**
|
|
* Verifies trait member restrictions
|
|
*
|
|
* @param {string} name property name
|
|
* @param {*} value property value
|
|
* @param {Object} keywords property keywords
|
|
* @param {Function} h original handler that we replaced
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function _parseMember( name, value, keywords, h )
|
|
{
|
|
// traits are not permitted to define constructors
|
|
if ( name === '__construct' )
|
|
{
|
|
throw Error( "Traits may not define __construct" );
|
|
}
|
|
|
|
// will be supported in future versions
|
|
if ( keywords['static'] )
|
|
{
|
|
throw Error(
|
|
"Cannot define member `" + name + "'; static trait " +
|
|
"members are currently unsupported"
|
|
);
|
|
}
|
|
|
|
// apply original handler
|
|
h.apply( this, arguments );
|
|
}
|
|
|
|
|
|
/**
|
|
* Throws error if non-internal property is found within PROPS
|
|
*
|
|
* For details and rationale, see the Trait/PropertyTest case.
|
|
*
|
|
* @param {string} name property name
|
|
* @param {*} value property value
|
|
* @param {Object} keywords property keywords
|
|
* @param {Function} h original handler that we replaced
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function _parseProps( name, value, keywords, h )
|
|
{
|
|
// ignore internal properties
|
|
if ( name.substr( 0, 3 ) === '___' )
|
|
{
|
|
return;
|
|
}
|
|
|
|
if ( !( keywords['private'] ) )
|
|
{
|
|
throw Error(
|
|
"Cannot define property `" + name + "'; only private " +
|
|
"properties are permitted within Trait definitions"
|
|
);
|
|
}
|
|
|
|
// apply original handler
|
|
h.apply( this, arguments );
|
|
}
|
|
|
|
|
|
Trait.implement = function()
|
|
{
|
|
var ifaces = arguments;
|
|
|
|
return {
|
|
extend: function()
|
|
{
|
|
// pass our interface metadata as the invocation context
|
|
return Trait.extend.apply(
|
|
{ __$$meta: { ifaces: ifaces } },
|
|
arguments
|
|
);
|
|
},
|
|
};
|
|
};
|
|
|
|
|
|
Trait.isTrait = function( trait )
|
|
{
|
|
return !!( trait || {} ).__trait;
|
|
};
|
|
|
|
|
|
/**
|
|
* Create a concrete class from the abstract trait class
|
|
*
|
|
* This class is the one that will be instantiated by classes that mix in
|
|
* the trait.
|
|
*
|
|
* @param {AbstractClass} acls abstract trait class
|
|
*
|
|
* @return {Class} concrete trait class for instantiation
|
|
*/
|
|
function createConcrete( acls )
|
|
{
|
|
// start by providing a concrete implementation for our dummy method and
|
|
// a constructor that accepts the protected member object of the
|
|
// containing class
|
|
var dfn = {
|
|
'protected ___$$trait$$': function() {},
|
|
|
|
// protected member object (we define this as protected so that the
|
|
// parent ACLS has access to it (!), which is not prohibited since
|
|
// JS does not provide a strict typing mechanism...this is a kluge)
|
|
// and target supertype---that is, what __super calls should
|
|
// referene
|
|
'protected ___$$pmo$$': null,
|
|
'protected ___$$super$$': null,
|
|
__construct: function( base, pmo )
|
|
{
|
|
this.___$$super$$ = base;
|
|
this.___$$pmo$$ = pmo;
|
|
},
|
|
|
|
// mainly for debugging; should really never see this.
|
|
__name: '#ConcreteTrait#',
|
|
};
|
|
|
|
// every abstract method should be overridden with a proxy to the
|
|
// protected member object that will be passed in via the ctor
|
|
var amethods = ClassBuilder.getMeta( acls ).abstractMethods;
|
|
for ( var f in amethods )
|
|
{
|
|
// TODO: would be nice if this check could be for '___'; need to
|
|
// replace amethods.__length with something else, then
|
|
if ( !( Object.hasOwnProperty.call( amethods, f ) )
|
|
|| ( f.substr( 0, 2 ) === '__' )
|
|
)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// we know that if it's not public, then it must be protected
|
|
var vis = ( acls.___$$methods$$['public'][ f ] !== undefined )
|
|
? 'public'
|
|
: 'protected';
|
|
|
|
// setting the correct visibility modified is important to prevent
|
|
// visibility de-escalation errors if a protected concrete method is
|
|
// provided
|
|
dfn[ vis + ' proxy ' + f ] = '___$$pmo$$';
|
|
}
|
|
|
|
// virtual methods need to be handled with care to ensure that we invoke
|
|
// any overrides
|
|
createVirtProxy( acls, dfn );
|
|
|
|
return acls.extend( dfn );
|
|
}
|
|
|
|
|
|
/**
|
|
* Create virtual method proxies for all virtual members
|
|
*
|
|
* Virtual methods are a bit of hassle with traits: we are in a situation
|
|
* where we do not know at the time that the trait is created whether or not
|
|
* the virtual method has been overridden, since the class that the trait is
|
|
* mixed into may do the overriding. Therefore, we must check if an override
|
|
* has occured *when the method is invoked*; there is room for optimization
|
|
* there (by making such a determination at the time of mixin), but we'll
|
|
* leave that for later.
|
|
*
|
|
* @param {AbstractClass} acls abstract trait class
|
|
* @param {Object} dfn destination definition object
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function createVirtProxy( acls, dfn )
|
|
{
|
|
var vmembers = ClassBuilder.getMeta( acls ).virtualMembers;
|
|
|
|
// f = `field'
|
|
for ( var f in vmembers )
|
|
{
|
|
var vis = ( acls.___$$methods$$['public'][ f ] !== undefined )
|
|
? 'public'
|
|
: 'protected';
|
|
|
|
// this is the aforementioned proxy method; see the docblock for
|
|
// more information
|
|
dfn[ vis + ' virtual override ' + f ] = ( function()
|
|
{
|
|
return function()
|
|
{
|
|
var pmo = this.___$$pmo$$,
|
|
o = pmo[ f ];
|
|
|
|
// proxy to virtual override from the class we are mixed
|
|
// into, if found; otherwise, proxy to our supertype
|
|
return ( o )
|
|
? o.apply( pmo, arguments )
|
|
: this.__super.apply( this, arguments );
|
|
};
|
|
} )( f );
|
|
|
|
// this guy bypasses the above virtual override check, which is
|
|
// necessary in certain cases to prevent infinte recursion
|
|
dfn[ vis + ' virtual __$$' + f ] = ( function( f )
|
|
{
|
|
return function()
|
|
{
|
|
return this.___$$parent$$[ f ].apply( this, arguments );
|
|
};
|
|
} )( f );
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Mix trait into the given definition
|
|
*
|
|
* The original object DFN is modified; it is not cloned. TC should be
|
|
* initialized to an empty array; it is used to store context data for
|
|
* mixing in traits and will be encapsulated within a ctor closure (and thus
|
|
* will remain in memory).
|
|
*
|
|
* @param {Trait} trait trait to mix in
|
|
* @param {Object} dfn definition object to merge into
|
|
* @param {Array} tc trait class context
|
|
* @param {Class} base target supertyep
|
|
*
|
|
* @return {Object} dfn
|
|
*/
|
|
function mixin( trait, dfn, tc, base )
|
|
{
|
|
// the abstract class hidden within the trait
|
|
var acls = trait.__acls;
|
|
|
|
// retrieve the private member name that will contain this trait object
|
|
var iname = addTraitInst( trait, dfn, tc, base );
|
|
|
|
// recursively mix in trait's underlying abstract class (ensuring that
|
|
// anything that the trait inherits from is also properly mixed in)
|
|
mixinCls( acls, dfn, iname );
|
|
return dfn;
|
|
}
|
|
|
|
|
|
/**
|
|
* Recursively mix in class methods
|
|
*
|
|
* If CLS extends another class, its methods will be recursively processed
|
|
* to ensure that the entire prototype chain is properly proxied.
|
|
*
|
|
* For an explanation of the iname parameter, see the mixin function.
|
|
*
|
|
* @param {Class} cls class to mix in
|
|
* @param {Object} dfn definition object to merge into
|
|
* @param {string} iname trait object private member instance name
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function mixinCls( cls, dfn, iname )
|
|
{
|
|
var methods = cls.___$$methods$$;
|
|
|
|
mixMethods( methods['public'], dfn, 'public', iname );
|
|
mixMethods( methods['protected'], dfn, 'protected', iname );
|
|
|
|
// if this class inherits from another class that is *not* the base
|
|
// class, recursively process its methods; otherwise, we will have
|
|
// incompletely proxied the prototype chain
|
|
var parent = methods['public'].___$$parent$$;
|
|
if ( parent && ( parent.constructor !== ClassBuilder.ClassBase ) )
|
|
{
|
|
mixinCls( parent.constructor, dfn, iname );
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Mix implemented types into destination object
|
|
*
|
|
* The provided destination object will ideally be the `implemented' array
|
|
* of the destination class's meta object.
|
|
*
|
|
* @param {Class} cls source class
|
|
* @param {Object} dest_meta destination object to copy into
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function mixinImpl( cls, dest_meta )
|
|
{
|
|
var impl = ClassBuilder.getMeta( cls ).implemented || [],
|
|
i = impl.length;
|
|
|
|
while ( i-- )
|
|
{
|
|
// TODO: this could potentially result in duplicates
|
|
dest_meta.push( impl[ i ] );
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Mix methods from SRC into DEST using proxies
|
|
*
|
|
* @param {Object} src visibility object to scavenge from
|
|
* @param {Object} dest destination definition object
|
|
* @param {string} vis visibility modifier
|
|
* @param {string} iname proxy destination (trait instance)
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function mixMethods( src, dest, vis, iname )
|
|
{
|
|
for ( var f in src )
|
|
{
|
|
if ( !( Object.hasOwnProperty.call( src, f ) ) )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// TODO: this is a kluge; we'll use proper reflection eventually,
|
|
// but for now, this is how we determine if this is an actual method
|
|
// vs. something that just happens to be on the visibility object
|
|
if ( !( src[ f ].___$$keywords$$ ) || f === '___$$trait$$' )
|
|
{
|
|
continue;
|
|
}
|
|
|
|
var keywords = src[ f ].___$$keywords$$,
|
|
vis = keywords['protected'] ? 'protected' : 'public';
|
|
|
|
// if abstract, then we are expected to provide the implementation;
|
|
// otherwise, we proxy to the trait's implementation
|
|
if ( keywords[ 'abstract' ] && !( keywords[ 'override' ] ) )
|
|
{
|
|
// copy the abstract definition (N.B. this does not copy the
|
|
// param names, since that is not [yet] important); the
|
|
// visibility modified is important to prevent de-escalation
|
|
// errors on override
|
|
dest[ vis + ' weak abstract ' + f ] = src[ f ].definition;
|
|
}
|
|
else
|
|
{
|
|
var vk = keywords['virtual'],
|
|
virt = vk ? 'virtual ' : '',
|
|
ovr = ( keywords['override'] ) ? 'override ' : '',
|
|
pname = ( vk ? '' : 'proxy ' ) + virt + ovr + vis + ' ' + f;
|
|
|
|
// if we have already set up a proxy for a field of this name,
|
|
// then multiple traits have defined the same concrete member
|
|
if ( dest[ pname ] !== undefined )
|
|
{
|
|
// TODO: between what traits?
|
|
throw Error( "Trait member conflict: `" + f + "'" );
|
|
}
|
|
|
|
// if non-virtual, a normal proxy should do
|
|
if ( !( keywords[ 'virtual' ] ) )
|
|
{
|
|
dest[ pname ] = iname;
|
|
continue;
|
|
}
|
|
|
|
// proxy this method to what will be the encapsulated trait
|
|
// object (note that we do not use the proxy keyword here
|
|
// beacuse we are not proxying to a method of the same name)
|
|
dest[ pname ] = ( function( f )
|
|
{
|
|
return function()
|
|
{
|
|
var pdest = this[ iname ];
|
|
|
|
// invoke the direct method on the trait instance; this
|
|
// bypasses the virtual override check on the trait
|
|
// method to ensure that it is invoked without
|
|
// additional overhead or confusion
|
|
var ret = pdest[ '__$$' + f ].apply( pdest, arguments );
|
|
|
|
// if the trait returns itself, return us instead
|
|
return ( ret === pdest )
|
|
? this
|
|
: ret;
|
|
};
|
|
} )( f );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* Add concrete trait class to a class instantion list
|
|
*
|
|
* This list---which will be created if it does not already exist---will be
|
|
* used upon instantiation of the class consuming DFN to instantiate the
|
|
* concrete trait classes.
|
|
*
|
|
* Here, `tc' and `to' are understood to be, respectively, ``trait class''
|
|
* and ``trait object''.
|
|
*
|
|
* @param {Class} T trait
|
|
* @param {Object} dfn definition object of class being mixed into
|
|
* @param {Array} tc trait class object
|
|
* @param {Class} base target supertyep
|
|
*
|
|
* @return {string} private member into which C instance shall be stored
|
|
*/
|
|
function addTraitInst( T, dfn, tc, base )
|
|
{
|
|
var base_cid = base.__cid;
|
|
|
|
// creates a property of the form ___$to$N$M to hold the trait object
|
|
// reference; M is required because of the private member restrictions
|
|
// imposed to be consistent with pre-ES5 fallback
|
|
var iname = '___$to$' + T.__acls.__cid + '$' + base_cid;
|
|
|
|
// the trait object array will contain two values: the destination field
|
|
// and the trait to instantiate
|
|
tc.push( [ iname, T ] );
|
|
|
|
// we must also add the private field to the definition object to
|
|
// support the object assignment indicated by TC
|
|
dfn[ 'private ' + iname ] = null;
|
|
|
|
// create internal trait ctor if not available
|
|
if ( dfn.___$$tctor$$ === undefined )
|
|
{
|
|
// TODO: let's check for inheritance or something to avoid this weak
|
|
// definition (this prevents warnings if there is not a supertype
|
|
// that defines the trait ctor)
|
|
dfn[ 'weak virtual ___$$tctor$$' ] = function() {};
|
|
dfn[ 'virtual override ___$$tctor$$' ] = createTctor( tc, base );
|
|
}
|
|
|
|
return iname;
|
|
}
|
|
|
|
|
|
/**
|
|
* Trait initialization constructor
|
|
*
|
|
* May be used to initialize all traits mixed into the class that invokes
|
|
* this function. All concrete trait classes are instantiated and their
|
|
* resulting objects assigned to their rsepective pre-determined field
|
|
* names.
|
|
*
|
|
* This will lazily create the concrete trait class if it does not already
|
|
* exist, which saves work if the trait is never used.
|
|
*
|
|
* @param {Object} tc trait class list
|
|
* @param {Class} base target supertype
|
|
*
|
|
* @return {undefined}
|
|
*/
|
|
function tctor( tc, base )
|
|
{
|
|
// instantiate all traits and assign the object to their
|
|
// respective fields
|
|
for ( var t in tc )
|
|
{
|
|
var f = tc[ t ][ 0 ],
|
|
T = tc[ t ][ 1 ],
|
|
C = T.__ccls || ( T.__ccls = createConcrete( T.__acls ) );
|
|
|
|
// instantiate the trait, providing it with our protected visibility
|
|
// object so that it has access to our public and protected members
|
|
// (but not private); in return, we will use its own protected
|
|
// visibility object to gain access to its protected members...quite
|
|
// the intimate relationship
|
|
this[ f ] = C( base, this.___$$vis$$ ).___$$vis$$;
|
|
}
|
|
|
|
// if we are a subtype, be sure to initialize our parent's traits
|
|
this.__super && this.__super();
|
|
};
|
|
|
|
|
|
/**
|
|
* Create trait constructor
|
|
*
|
|
* This binds the generic trait constructor to a reference to the provided
|
|
* trait class list.
|
|
*
|
|
* @param {Object} tc trait class list
|
|
* @param {Class} base target supertype
|
|
*
|
|
* @return {function()} trait constructor
|
|
*/
|
|
function createTctor( tc, base )
|
|
{
|
|
return function()
|
|
{
|
|
return tctor.call( this, tc, base );
|
|
};
|
|
}
|
|
|
|
|
|
module.exports = Trait;
|
|
|