1
0
Fork 0
easejs/doc/classes.texi

540 lines
21 KiB
Plaintext

@c This document is part of the ease.js manual
@c Copyright (c) 2011 Mike Gerwitz
@c Permission is granted to copy, distribute and/or modify this document
@c under the terms of the GNU Free Documentation License, Version 1.3
@c or any later version published by the Free Software Foundation;
@c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
@c Texts. A copy of the license is included in the section entitled ``GNU
@c Free Documentation License''.
@node Classes
@chapter Working With Classes
In Object-Oriented programming, the most common term you are likely to encounter
is ``Class''. A @dfn{class} is like a blueprint for creating an @dfn{object},
which is an @dfn{instance} of that class. Classes contain @dfn{members}, which
include primarily properties and methods. A @dfn{property} is a value, much like
a variable, that a class ``owns''. A @dfn{method}, when comparing with
JavaScript, is a function that is ``owned'' by a class. As a consequence,
properties and methods are not part of the global scope.
JavaScript does not support classes in the manner traditionally understood by
Object-Oriented programmers. This is because JavaScript follows a different
model which instead uses prototypes. Using this model, JavaScript supports
basic instantiation and inheritance. Rather than instantiating classes,
JavaScript instantiates constructors, which are functions. The following example
illustrates how you would typically create a class-like object in JavaScript:
@float Figure, f:class-js
@verbatim
/**
* Declaring "classes" WITHOUT ease.js
*/
// our "class"
var MyClass = function()
{
this.prop = 'foobar';
}
// a class method
MyClass.prototype.getProp = function()
{
return this.prop;
};
// create a new instance of the class and execute doStuff()
var foo = new MyClass();
console.log( foo.getProp() ); // outputs "foobar"
@end verbatim
@caption{Basic ``Class'' in JavaScript @emph{without} using ease.js}
@end float
This gets the job done, but the prototypal paradigm has a number of limitations
amongst its incredible flexibility. For Object-Oriented programmers, it's both
alien and inadequate. That is not to say that it is not useful. In fact, it is
so flexible that an entire Object-Oriented framework was able to be built atop
of it.
ease.js aims to address the limitations of the prototype model and provide a
familiar environment for Object-Oriented developers. Developers should not have
to worry about @emph{how} classes are implemented in JavaScript (indeed, those
details should be encapsulated). You, as a developer, should be concerned with
only how to declare and use the classes. If you do not understand what a
prototype is, that should be perfectly fine. You shouldn't need to understand it
in order to use the library (though, it's always good to understand what a
prototype is when working with JavaScript).
In this chapter and those that follow, we will see the limitations that ease.js
addresses. We will also see how to declare the classes using both prototypes and
ease.js, until such a point where prototypes are no longer adequate.
@menu
* Declaring Classes:: Learn how to declare a class with ease.js
* Member Visibility:: Encapsulation is a core concept of Object-Oriented
programming
@end menu
@node Declaring Classes
@section Declaring Classes
We just took a look at what it's like declaring a class using prototypes
(@pxref{f:class-js,}). This method is preferred for many developers, but it is
important to recognize that there is a distinct difference between Prototypal
and Object-Oriented development models. As an Object-Oriented developer, you
shouldn't concern yourself with @emph{how} a class is declared in JavaScript. In
true OO fashion, that behavior should be encapsulated. With ease.js, it is.
Let's take a look at how to declare that exact same class using ease.js:
@float Figure, f:class-easejs
@verbatim
// if client-side, use: var Class = easejs.Class;
var Class = require( 'easejs' ).Class;
var MyClass = Class(
{
'public prop': 'foobar',
'public getProp': function()
{
return this.prop;
}
} );
// create a new instance of the class and execute doStuff()
var foo = MyClass();
console.log( foo.getProp() ); // outputs "foobar"
@end verbatim
@caption{Basic anonymous class declaration using ease.js}
@end float
That should look much more familiar to Object-Oriented developers. There are a
couple important notes before we continue evaluating this example:
@itemize
@item
The first thing you will likely notice is our use of the @code{public} keyword.
This is optional (the default visibility is public), but always recommended.
Future versions of ease.js may provide warnings when the visibility is omitted.
We will get more into visibility later on.
@item
Unlike @ref{f:class-js,}, we do not use the @code{new} keyword in order to
instantiate our class. You are more than welcome to use the @code{new} keyword
if you wish, but it is optional when using ease.js. This is mainly because
without this feature, if the keyword is omitted, the constructor is called as a
normal function, which could have highly negative consequences. This style of
instantiation also has its benefits, which will be discussed later on.
@item
ease.js's class module is imported using @code{require()} in the above example.
If using ease.js client-side (@pxref{Client-Side Include}), you can instead use
@samp{var Class = easejs.Class}. From this point on, importing the module will
not be included in examples.
@end itemize
The above example declares an anonymous class, which is stored in the
variable @var{MyClass}. By convention, we use CamelCase, with the first letter
capital, for class names (and nothing else).
@menu
* Anonymous vs. Named Classes::
* Temporary Classes:: Throwaway classes that only need to be used once
* Temporary Instances:: Throwaway instances that only need to be used once
@end menu
@node Anonymous vs. Named Classes
@subsection Anonymous vs. Named Classes
We state that @ref{f:class-easejs,} declared an @dfn{anyonmous class} because
the class was not given a name. Rather, it was simply assigned to a variable,
which itself has a name. To help keep this idea straight, consider the common
act of creating anonymous functions in JavaScript:
@float Figure, f:anon-func
@verbatim
// anonymous
var myFunc = function() {};
// named
function myNamedFunc() {};
@end verbatim
@caption{Anonymous functions in JavaScript}
@end float
If the function itself is not given a name, it is considered to be anonymous,
even though it is stored within a variable. Just as the engine has no idea what
that function is named, ease.js has no idea what the class is named because it
does not have access to the name of the variable to which it was assigned.
Names are not required for classes, but they are recommended. For example,
consider what may happen when your class is output in an error message.
@float Figure, f:anon-err
@verbatim
// call non-existent method
foo.baz();
// TypeError: Object #<anonymous> has no method 'baz'
@end verbatim
@caption{Anonymous classes do not make for useful error messages}
@end float
If you have more than a couple classes in your software, that error message is
not too much help. You are left relying on the stack trace to track down the
error. This same output applies to converting a class to a string or viewing it
in a debugger. It is simply not helpful. If anything, it is confusing. If you've
debugged large JS applications that make liberal use of anonymous functions, you
might be able to understand that frustration.
Fortunately, ease.js permits you to declare a named class. A @dfn{named class}
is simply a class that is assigned a string for its name, so that error
messages, debuggers, etc provide more useful information. @emph{There is
functionally no difference between named and anonymous classes.}
@float Figure, f:class-named
@verbatim
var MyFoo = Class( 'MyFoo', {} ),
foo = MyFoo();
// call non-existent method
foo.baz();
// TypeError: Object #<MyFoo> has no method 'baz'
@end verbatim
@caption{Declaring an empty @emph{named} class}
@end float
Much better! We now have a useful error message and immediately know which class
is causing the issue.
@node Temporary Classes
@subsection Temporary Classes
In @ref{f:class-easejs,}, we saw that the @code{new} keyword was unnecessary
when instantiating classes. This permits a form of shorthand that is very useful
for creating @dfn{temporary classes}, or ``throwaway`` classes which are used
only once.
Consider the following example:
@float Figure, f:class-tmp
@verbatim
// new instance of anonymous class
var foo = Class(
{
'public bar': function()
{
return 'baz';
}
} )();
foo.bar(); // returns 'baz'
@end verbatim
@caption{Declaring a temporary (throwaway) class}
@end float
In @ref{f:class-tmp,} above, rather than declaring a class, storing that in a
variable, then instantiating it separately, we are doing it in a single command.
Notice the parenthesis at the end of the statement. This invokes the
constructor. Since the @code{new} keyword is unnecessary, a new instance of the
class is stored in the variable @var{foo}.
We call this a temporary class because it is used only to create a single
instance. The class is then never referenced again. Therefore, we needn't even
store it - it's throwaway.
The downside of this feature is that it is difficult to notice unless the reader
is paying very close attention. There is no keyword to tip them off. Therefore,
it is very important to clearly document that you are storing an instance in the
variable rather than an actual class definition. If you follow the CamelCase
convention for class names, then simply do not capitalize the first letter of
the destination variable for the instance.
@node Temporary Instances
@subsection Temporary Instances
Similar to @ref{Temporary Classes,}, you may wish to use an @emph{instance}
temporarily to invoke a method or chain of methods. @dfn{Temporary instances}
are instances that are instantiated in order to invoke a method or chain of
methods, then are immediately discarded.
@float Figure, f:inst-tmp
@verbatim
// retrieve the name from an instance of Foo
var name = Foo().getName();
// method chaining
var car = VehicleFactory().createBody().addWheel( 4 ).addDoor( 2 ).build();
// temporary class with callback
HttpRequest( host, port ).get( path, function( data )
{
console.log( data );
} );
// Conventionally (without ease.js), you'd accomplish the above using the
// 'new' keyword. You may still do this with ease.js, though it is less
// clean looking.
( new Foo() ).someMethod();
@end verbatim
@caption{Declaring a temporary (throwaway) class}
@end float
Rather than storing the class instance, we are using it simply to invoke
methods. The results of those methods are stored in the variable rather than the
class instance. The instance is immediately discarded, since it is no longer
able to be referenced, and is as such a temporary instance.
In order for method chaining to work, each method must return itself.
This pattern is useful for when a class requires instantiation in order to
invoke a method. Classes that intend to be frequently used in this manner should
declare static methods so that they may be accessed without the overhead of
creating a new class instance.
@node Member Visibility
@section Member Visibility
One of the major hurdles ease.js aimed to address (indeed, one of the core
reasons for its creation) was that of encapsulation. JavaScript's prototype
model provides limited means of encapsulating data. Since functions limit scope,
they may be used to mimic private members. These are often referred to as
@dfn{privileged members}. However, declaring classes in this manner can be
messy. ease.js aims to provide an elegant implementation that is both a pleasure
to work with and able to support protected members.
The term @dfn{visibility} refers to how a class member may be accessed. There
are three levels of visibility implemented by ease.js, which are listed here
from most visible to least:
@table @dfn
@item public
Accessible outside of the instance (e.g. @samp{foo.publicProp}). Inherited by
subtypes.
@item protected
Not accessible outside of the instance (only accessible by
@samp{this.protectedProp}). Inherited by subtypes.
@item private
Not accessible outside of the instance. Not inherited by subtypes.
@end table
By default, all members are public. This means that the members can be accessed
and modified from within an instance and from outside. Subtypes (classes that
inherit from it) will inherit the member. Public methods expose an API by which
users may use your class. Public properties, however, should be less common, for
a very important reason.
This introduces the concept of @dfn{encapsulation}, which is the act of hiding
information within a class or instance. Classes should be thought of black
boxes. We want them to do their job, but we do not care @emph{how} they do their
job. Encapsulation takes the complexity out of a situation and allows the
developer to focus on accomplishing the task using familiar concepts. For
example, consider a class named @var{Dog} which has a method @code{walk()}. To
walk a dog, we simply call @code{Dog().walk()}. The @code{walk()} method could
be doing anything. By preventing the details of the method from being exposed,
we present the developer with a very simple interface. Rather than the developer
having to be concerned with moving each of the dog's legs, all they have to do
is understand that the dog is being walked.
Let's consider our @var{Dog} class in more detail:
@float Figure, f:encapsulation
@verbatim
Class( 'Dog',
{
'private _legs': {},
'private _body': {},
// ...
'public walk': function()
{
this.stand();
this._moveFrontLeg( 0 );
this._moveBackLeg( 1 );
this._moveFrontLeg( 1 );
this._moveBackLeg( 0 );
},
'protected stand': function()
{
if ( this.isSitting() )
{
// ...
}
},
'protected rollOver': function()
{
this._body.roll();
},
'private _moveFrontLeg': function( leg )
{
this._legs.front[ leg ].move();
},
'private _moveBackLeg': function( leg )
{
this._legs.back[ leg ].move();
},
// ...
} );
@end verbatim
@caption{Encapsulating behavior of a class}
@end float
As you can see above, the act of making the dog move forward is a bit more
complicated than the developer may have originally expected. The dog has four
separate legs that need to be moved individually. The dog must also first stand
before it can be walked, but it can only stand if it's sitting. Detailed tasks
such as these occur all the time in classes, but they are hidden from the
developer using the public API. Why should the developer be concerned with all
of the legs?
As a general rule of thumb, you should use the @emph{lowest} level of visibility
possible unless you have a strong reason for increasing it. Start by declaring
everything as private and work from there.
@menu
* Private Members::
* Protected Members::
@end menu
@node Private Members
@subsection Private Members
Let's first explore private members. The majority of the members in the
@var{Dog} class are private. This is the lowest level of visibility (and
consequently the @emph{highest} level of encapsulation). By convention, we
prefix private members with an underscore. Private members are available
@emph{only to the class that defined it} and are not available outside the
class. This means that we cannot call a private member from outside the class
define in @ref{f:encapsulation,}:
@float Figure, f:encapsulation-call-priv
@verbatim
var dog = Dog();
dog._moveFrontLeg( 1 );
// TypeError: Object #<Dog> has no method '_moveFrontLeg'
@end verbatim
@caption{Cannot access private members outside the class}
@end float
You will notice that the dog's legs are declared private as well. This is to
ensure we look at the dog as a whole. We don't care about what the dog is made
up of. Legs, fur, tail, teeth, tongue, etc - they are all irrelevant to our
purpose. We just want to talk the dog. Encapsulating those details also ensures
that they will not be tampered with, which will keep the dog in a consistent,
predictable state.
Private members cannot be inherited. Let's say we want to make a class called
@var{TwoLeggedDog} to represent a dog that was trained to walk only on two feet.
We could approach this in a couple different ways. The first way would be to
prevent the front legs from moving. What happens when we explore that approach:
@float Figure, f:encapsulation-inherit-priv
@verbatim
var two_legged_dog = Class( 'TwoLeggedDog' ).extend( Dog,
{
/**
* This won't override the parent method.
*/
'private _moveFrontLeg': function( leg )
{
// don't do anything
return;
},
} )();
two_legged_dog.walk();
@end verbatim
@caption{Cannot override private members of supertype}
@end float
If you were to attempt to walk the dog after attempting the above change, you
would find that @emph{the dog's front legs still move}! This is because, as
mentioned before, private methods are not inherited. Rather than overriding the
parent's @var{_moveFrontLeg} method, you are instead @emph{defining a new
method}, with the name @var{_moveFrontLeg}. The old method will still be called.
Instead, we would have to override the public @code{walk()} method to prevent
our dog from moving his front feet.
@node Protected Members
@subsection Protected Members
Protected members are often misunderstood. Many developers will declare all
their members as either public or protected under the misconception that they
may as well allow subclasses to override whatever functionality they want. This
makes the class more flexible.
While it is true that the class becomes more flexible to work with for subtypes,
this is a dangerous practice. In fact, doing so @emph{violates encapsulation}.
Let's consider the levels of visibility in this manner:
@table @strong
@item public
Provides an API for @emph{users of the class}.
@item protected
Provides an API for @emph{subclasses}.
@item private
Provides an API for @emph{the class itself}.
@end table
Just as we want to hide data from the public API, we want to do the same for
subtypes. If we simply expose everything to any subclass that comes by, that
acts as a peephole in our black box. We don't want people spying into our
internals. Subtypes shouldn't care about the dog's implementation either.
@ref{Private Members,Private} members should be used whenever possible, unless
you are looking to provide subtypes with the ability to access or override
methods. In that case, we can move up to try protected members.
@ref{f:encapsulation,} defined a single method as protected - @code{stand()}.
Because it is protected, it is able to be inherited by subtypes. Since it is
inherited, it may also be overridden. Let's define another subtype,
@var{LazyDog}, which refuses to stand.
@float Figure, f:encapsulation-inherit-prot
@verbatim
var lazy_dog = Class( 'TwoLeggedDog' ).extend( Dog,
{
/**
* Overrides parent method
*/
'protected stand': function()
{
// nope!
this.rollOver();
return false;
},
} )();
lazy_dog.walk();
@end verbatim
@caption{Protected members are inherited by subtypes}
@end float
There are a couple important things to be noted from the above example. Firstly,
we are able to override the @code{walk()} method, because it was inherited.
Secondly, since @code{rollOver()} was also inherited from the parent, we are
able to call that method, resulting in an upside-down dog that refuses to stand
up, just moving his feet.
Another important detail to notice is that @code{Dog.rollOver()} accesses a
private property of @var{Dog} -- @var{_body}. Our subclass does not have access
to that variable. Since it is private, it was not inherited. However, since the
@code{rollOver()} method is called within the context of the @var{Dog} class,
the @emph{method} has access to the private member, allowing our dog to
successfully roll over. If, on the other hand, we were to override
@code{rollOver()}, our code would @emph{not} have access to that private object.
Calling @samp{this.__super()} from within the overridden method would, however,
call the parent method, which would again have access to its parent's private
members.