190 lines
5.7 KiB
JavaScript
190 lines
5.7 KiB
JavaScript
/**
|
|
* Tests abstract trait definition and use
|
|
*
|
|
* Copyright (C) 2014 Mike Gerwitz
|
|
*
|
|
* This file is part of GNU ease.js.
|
|
*
|
|
* ease.js is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
require( 'common' ).testCase(
|
|
{
|
|
caseSetUp: function()
|
|
{
|
|
this.Sut = this.require( 'Trait' );
|
|
this.Class = this.require( 'class' );
|
|
this.AbstractClass = this.require( 'class_abstract' );
|
|
},
|
|
|
|
|
|
/**
|
|
* If a trait contains an abstract member, then any class that uses it
|
|
* should too be considered abstract if no concrete implementation is
|
|
* provided.
|
|
*/
|
|
'Abstract traits create abstract classes when used': function()
|
|
{
|
|
var T = this.Sut( { 'abstract foo': [] } );
|
|
|
|
var _self = this;
|
|
this.assertDoesNotThrow( function()
|
|
{
|
|
// no concrete `foo; should be abstract (this test is sufficient
|
|
// because AbstractClass will throw an error if there are no
|
|
// abstract members)
|
|
_self.AbstractClass.use( T ).extend( {} );
|
|
}, Error );
|
|
},
|
|
|
|
|
|
/**
|
|
* A class may still be concrete even if it uses abstract traits so long
|
|
* as it provides concrete implementations for each of the trait's
|
|
* abstract members.
|
|
*/
|
|
'Concrete classes may use abstract traits by definining members':
|
|
function()
|
|
{
|
|
var T = this.Sut( { 'abstract traitfoo': [ 'foo' ] } ),
|
|
C = null,
|
|
called = false;
|
|
|
|
var _self = this;
|
|
this.assertDoesNotThrow( function()
|
|
{
|
|
C = _self.Class.use( T ).extend(
|
|
{
|
|
traitfoo: function( foo ) { called = true; },
|
|
} );
|
|
} );
|
|
|
|
// sanity check
|
|
C().traitfoo();
|
|
this.assertOk( called );
|
|
},
|
|
|
|
|
|
/**
|
|
* The concrete methods provided by a class must be compatible with the
|
|
* abstract definitions of any used traits. This test ensures not only
|
|
* that the check is being performed, but that the abstract declaration
|
|
* is properly inherited from the trait.
|
|
*
|
|
* TODO: The error mentions "supertype" compatibility, which (although
|
|
* true) may be confusing; perhaps reference the trait that declared the
|
|
* method as abstract.
|
|
*/
|
|
'Concrete classes must be compatible with abstract traits': function()
|
|
{
|
|
var T = this.Sut( { 'abstract traitfoo': [ 'foo' ] } );
|
|
|
|
var _self = this;
|
|
this.assertThrows( function()
|
|
{
|
|
C = _self.Class.use( T ).extend(
|
|
{
|
|
// missing param in definition
|
|
traitfoo: function() {},
|
|
} );
|
|
} );
|
|
},
|
|
|
|
|
|
/**
|
|
* If a trait defines an abstract method, then it should be able to
|
|
* invoke a concrete method of the same name defined by a class.
|
|
*/
|
|
'Traits can invoke concrete class implementation of abstract method':
|
|
function()
|
|
{
|
|
var expected = 'foobar';
|
|
|
|
var T = this.Sut(
|
|
{
|
|
'public getFoo': function()
|
|
{
|
|
return this.echo( expected );
|
|
},
|
|
|
|
'abstract protected echo': [ 'value' ],
|
|
} );
|
|
|
|
var result = this.Class.use( T ).extend(
|
|
{
|
|
// concrete implementation of abstract trait method
|
|
'protected echo': function( value )
|
|
{
|
|
return value;
|
|
},
|
|
} )().getFoo();
|
|
|
|
this.assertEqual( result, expected );
|
|
},
|
|
|
|
|
|
/**
|
|
* Even more kinky is when a trait provides a concrete implementation
|
|
* for an abstract method that is defined in another trait that is mixed
|
|
* into the same class. This makes sense, because that class acts as
|
|
* though the trait's abstract method is its own. This allows for
|
|
* message passing between two traits with the class as the mediator.
|
|
*
|
|
* This is otherwise pretty much the same as the above test. Note that
|
|
* we use a public `echo' method; this is to ensure that we do not break
|
|
* in the event that protected trait members break (that is: are not
|
|
* exposed to the class).
|
|
*/
|
|
'Traits can invoke concrete trait implementation of abstract method':
|
|
function()
|
|
{
|
|
var expected = 'traitbar';
|
|
|
|
// same as the previous test
|
|
var Ta = this.Sut(
|
|
{
|
|
'public getFoo': function()
|
|
{
|
|
return this.echo( expected );
|
|
},
|
|
|
|
'abstract public echo': [ 'value' ],
|
|
} );
|
|
|
|
// but this is new
|
|
var Tc = this.Sut(
|
|
{
|
|
// concrete implementation of abstract trait method
|
|
'public echo': function( value )
|
|
{
|
|
return value;
|
|
},
|
|
} );
|
|
|
|
this.assertEqual(
|
|
this.Class.use( Ta, Tc ).extend( {} )().getFoo(),
|
|
expected
|
|
);
|
|
|
|
// order shouldn't matter (because that'd be confusing and
|
|
// frustrating to users, depending on how the traits are named), so
|
|
// let's do this again in reverse order
|
|
this.assertEqual(
|
|
this.Class.use( Tc, Ta ).extend( {} )().getFoo(),
|
|
expected,
|
|
"Crap; order matters?!"
|
|
);
|
|
},
|
|
} );
|