1
0
Fork 0
easejs/test/Trait/ContextTest.js

372 lines
11 KiB
JavaScript

/**
* Tests trait scoping
*
* Copyright (C) 2014, 2016 Free Software Foundation, Inc.
*
* This file is part of GNU ease.js.
*
* ease.js is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* These tests could possibly duplicate tests elsewhere; that's fine, as
* this is a vital concept that wouldn't hurt to be reiterated in a
* different context (no pun intended).
*/
require( 'common' ).testCase(
{
caseSetUp: function()
{
this.Sut = this.require( 'Trait' );
this.Class = this.require( 'class' );
this.Interface = this.require( 'interface' );
},
/**
* Since the private scope of classes and the traits that they use are
* disjoint, traits should never be able to access any private member of
* a class that uses it.
*
* The beauty of this is that we get this ``feature'' for free with
* our composition-based trait implementation.
*/
'Private class members are not accessible to used traits': function()
{
var T = this.Sut(
{
// attempts to access C._priv
'public getPriv': function() { return this._priv; },
// attempts to invoke C._privMethod
'public invokePriv': function() { this._privMethod(); },
} );
var inst = this.Class.use( T ).extend(
{
'private _priv': 'foo',
'private _privMethod': function() {},
} )();
this.assertEqual( inst.getPriv(), undefined );
this.assertThrows( function()
{
inst.invokePriv();
}, Error );
},
/**
* Similar concept to the above---class and trait scopes are disjoint.
* This is particularily important, since traits will have no idea what
* other traits they will be mixed in with and therefore must be immune
* from nasty state clashes.
*/
'Private trait members are not accessible to containing class':
function()
{
var T = this.Sut(
{
'private _priv': 'bar',
'private _privMethod': function() {},
} );
// reverse of the previous test case
var inst = this.Class.use( T ).extend(
{
// attempts to access T._priv
'public getPriv': function() { return this._priv; },
// attempts to invoke T._privMethod
'public invokePriv': function() { this._privMethod(); },
} )();
this.assertEqual( inst.getPriv(), undefined );
this.assertThrows( function()
{
inst.invokePriv();
}, Error );
},
/**
* Since all scopes are disjoint, it would stand to reason that all
* traits should also have their own private scope independent of other
* traits that are mixed into the same class. This is also very
* important for the same reasons as the previous test---we cannot have
* state clashes between traits.
*/
'Traits do not have access to each others\' private members': function()
{
var T1 = this.Sut(
{
'private _priv1': 'foo',
'private _privMethod1': function() {},
} ),
T2 = this.Sut(
{
// attempts to access T1._priv1
'public getPriv': function() { return this._priv1; },
// attempts to invoke T1._privMethod1
'public invokePriv': function() { this._privMethod1(); },
} );
var inst = this.Class.use( T1, T2 ).extend( {} )();
this.assertEqual( inst.getPriv(), undefined );
this.assertThrows( function()
{
inst.invokePriv();
}, Error );
},
/**
* If this seems odd at first, consider this: traits provide
* copy/paste-style functionality, meaning they need to be able to
* provide public methods. However, we may not always want to mix trait
* features into a public API; therefore, we need the ability to mix in
* protected members.
*/
'Classes can access protected trait members': function()
{
var T = this.Sut( { 'protected foo': function() {} } );
var _self = this;
this.assertDoesNotThrow( function()
{
_self.Class.use( T ).extend(
{
// invokes protected trait method
'public callFoo': function() { this.foo(); }
} )().callFoo();
} );
},
/**
* When a class makes a call to a trait method, the calling context
* should be that of the trait itself (that is, the trait has its own
* internal state).
*/
'Class->trait calling context binds to trait': function()
{
var T = this.Sut(
{
'private _foo': [],
_givenMixin: null,
// must be properly bound before mixin
__mixin: function()
{
this._givenMixin = this.get();
},
push: function( item )
{
this._foo.push( item );
},
// make sure calling context is preserved on override
'virtual overridePush': function( item )
{
this._foo.push( item );
},
get: function()
{
return this._foo;
},
getGivenMixin: function()
{
return this._givenMixin;
},
} );
var inst = this.Class.use( T ).extend(
{
// ensure calling context on T
superPush: function( item )
{
this.push( item );
},
'override overridePush': function( item )
{
this.__super( item );
},
} )();
inst.push( 'a' );
inst.superPush( 'b' );
inst.overridePush( 'c' );
this.assertDeepEqual( [ 'a', 'b', 'c' ], inst.get() );
this.assertStrictEqual( inst.get(), inst.getGivenMixin() );
},
/**
* This test focuses on an implementation detail: that traits extending
* classes literally extend that class. The problem there is that,
* because of this detail, calling one of the supertypes methods is
* going to apply the method within the context of _that
* trait_. Remember: each object has private state associated with each
* class in its hierarchy. So the class C containing the mixin of trait
* T has it's own state S_c, and T has its own state T_c because of the
* extension. Given C#Foo, calling T#Foo applies T_c rather than the
* intended C_c. That is, without proper care.
*
* This tests to make sure the context has been properly rebound to the
* mixer.
*/
'Trait->class calling context binds to class': function()
{
var C = this.Class(
{
'private _stack': [],
'virtual push': function( item )
{
this._stack.push( item );
},
// non-virtual, test fall-through
getStack: function()
{
return this._stack;
},
} );
var T = this.Sut.extend( C,
{
_givenMixin: null,
// proper context set before __mixin
__mixin: function()
{
this._givenMixin = this.getStack();
},
// proper context to __super
'override push': function( item )
{
this.__super( item );
},
// proper context to parent `getStack'
getSuperStack: function()
{
return this.getStack();
},
getGivenMixin: function()
{
return this._givenMixin;
},
} );
var stack = C.use( T )();
stack.push( 'a' );
// proper context to parent method call (non-__super)
this.assertStrictEqual( stack.getStack(), stack.getSuperStack() );
// proper context to __super
this.assertDeepEqual( [ 'a' ], stack.getStack() );
// context available before __mixin
this.assertStrictEqual( stack.getStack(), stack.getGivenMixin() );
},
/**
* Similar to the above, except that we extend an interface rather than
* a base class.
*
* Notice how T here implements I rather than extending C, and
* consequently uses `abstract override' in place of `override'.
*
* What is interesting in this case is whether this test fails when the
* previous does not, or vice-versa (such was the case when this test
* was introduced).
*/
'Trait->interface calling context binds to implementing class': function()
{
var I = this.Interface(
{
push: [ 'item' ],
getStack: [],
} );
var C = this.Class.implement( I ).extend(
{
'private _stack': [],
'virtual push': function( item )
{
this._stack.push( item );
},
// non-virtual, test fall-through
getStack: function()
{
return this._stack;
},
} );
var T = this.Sut.implement( I ).extend(
{
_givenMixin: null,
// proper context set before __mixin
__mixin: function()
{
this._givenMixin = this.getStack();
},
// proper context to __super
'abstract override push': function( item )
{
this.__super( item );
},
// proper context to parent `getStack'
getSuperStack: function()
{
return this.getStack();
},
getGivenMixin: function()
{
return this._givenMixin;
},
} );
var stack = C.use( T )();
stack.push( 'a' );
// proper context to parent method call (non-__super)
this.assertStrictEqual( stack.getStack(), stack.getSuperStack() );
// proper context to __super
this.assertDeepEqual( [ 'a' ], stack.getStack() );
// context available before __mixin
this.assertStrictEqual( stack.getStack(), stack.getGivenMixin() );
},
} );