@c This document is part of the ease.js manual @c Copyright (c) 2011 Mike Gerwitz @c Permission is granted to copy, distribute and/or modify this document @c under the terms of the GNU Free Documentation License, Version 1.3 @c or any later version published by the Free Software Foundation; @c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover @c Texts. A copy of the license is included in the section entitled ``GNU @c Free Documentation License''. @node Classes @chapter Working With Classes In Object-Oriented programming, the most common term you are likely to encounter is ``Class''. A @dfn{class} is like a blueprint for creating an @dfn{object}, which is an @dfn{instance} of that class. Classes contain @dfn{members}, which include primarily properties and methods. A @dfn{property} is a value, much like a variable, that a class ``owns''. A @dfn{method}, when comparing with JavaScript, is a function that is ``owned'' by a class. As a consequence, properties and methods are not part of the global scope. JavaScript does not support classes in the manner traditionally understood by Object-Oriented programmers. This is because JavaScript follows a different model which instead uses prototypes. Using this model, JavaScript supports basic instantiation and inheritance. Rather than instantiating classes, JavaScript instantiates constructors, which are functions. The following example illustrates how you would typically create a class-like object in JavaScript: @float Figure, f:class-js @verbatim /** * Declaring "classes" WITHOUT ease.js */ // our "class" var MyClass = function() { this.prop = 'foobar'; } // a class method MyClass.prototype.getProp = function() { return this.prop; }; // create a new instance of the class and execute doStuff() var foo = new MyClass(); console.log( foo.getProp() ); // outputs "foobar" @end verbatim @caption{Basic ``Class'' in JavaScript @emph{without} using ease.js} @end float This gets the job done, but the prototypal paradigm has a number of limitations amongst its incredible flexibility. For Object-Oriented programmers, it's both alien and inadequate. That is not to say that it is not useful. In fact, it is so flexible that an entire Object-Oriented framework was able to be built atop of it. ease.js aims to address the limitations of the prototype model and provide a familiar environment for Object-Oriented developers. Developers should not have to worry about @emph{how} classes are implemented in JavaScript (indeed, those details should be encapsulated). You, as a developer, should be concerned with only how to declare and use the classes. If you do not understand what a prototype is, that should be perfectly fine. You shouldn't need to understand it in order to use the library (though, it's always good to understand what a prototype is when working with JavaScript). In this chapter and those that follow, we will see the limitations that ease.js addresses. We will also see how to declare the classes using both prototypes and ease.js, until such a point where prototypes are no longer adequate. @menu * Declaring Classes:: Learn how to declare a class with ease.js @end menu @node Declaring Classes @section Declaring Classes We just took a look at what it's like declaring a class using prototypes (@pxref{f:class-js,}). This method is preferred for many developers, but it is important to recognize that there is a distinct difference between Prototypal and Object-Oriented development models. As an Object-Oriented developer, you shouldn't concern yourself with @emph{how} a class is declared in JavaScript. In true OO fashion, that behavior should be encapsulated. With ease.js, it is. Let's take a look at how to declare that exact same class using ease.js: @float Figure, f:class-easejs @verbatim // if client-side, use: var Class = easejs.Class; var Class = require( 'easejs' ).Class; var MyClass = Class( { 'public prop': 'foobar', 'public getProp': function() { return this.prop; } } ); // create a new instance of the class and execute doStuff() var foo = MyClass(); console.log( foo.getProp() ); // outputs "foobar" @end verbatim @caption{Basic anonymous class declaration using ease.js} @end float That should look much more familiar to Object-Oriented developers. There are a couple important notes before we continue evaluating this example: @itemize @item The first thing you will likely notice is our use of the @code{public} keyword. This is optional (the default visibility is public), but always recommended. Future versions of ease.js may provide warnings when the visibility is omitted. We will get more into visibility later on. @item Unlike @ref{f:class-js,}, we do not use the @code{new} keyword in order to instantiate our class. You are more than welcome to use the @code{new} keyword if you wish, but it is optional when using ease.js. This is mainly because without this feature, if the keyword is omitted, the constructor is called as a normal function, which could have highly negative consequences. This style of instantiation also has its benefits, which will be discussed later on. @item ease.js's class module is imported using @code{require()} in the above example. If using ease.js client-side (@pxref{Client-Side Include}), you can instead use @samp{var Class = easejs.Class}. From this point on, importing the module will not be included in examples. @end itemize The above example declares an anonymous class, which is stored in the variable @var{MyClass}. By convention, we use CamelCase, with the first letter capital, for class names (and nothing else). @menu * Anonymous vs. Named Classes:: * Temporary Classes:: Throwaway classes that only need to be used once * Temporary Instances:: Throwaway instances that only need to be used once @end menu @node Anonymous vs. Named Classes @subsection Anonymous vs. Named Classes We state that @ref{f:class-easejs,} declared an @dfn{anyonmous class} because the class was not given a name. Rather, it was simply assigned to a variable, which itself has a name. To help keep this idea straight, consider the common act of creating anonymous functions in JavaScript: @float Figure, f:anon-func @verbatim // anonymous var myFunc = function() {}; // named function myNamedFunc() {}; @end verbatim @caption{Anonymous functions in JavaScript} @end float If the function itself is not given a name, it is considered to be anonymous, even though it is stored within a variable. Just as the engine has no idea what that function is named, ease.js has no idea what the class is named because it does not have access to the name of the variable to which it was assigned. Names are not required for classes, but they are recommended. For example, consider what may happen when your class is output in an error message. @float Figure, f:anon-err @verbatim // call non-existent method foo.baz(); // TypeError: Object # has no method 'baz' @end verbatim @caption{Anonymous classes do not make for useful error messages} @end float If you have more than a couple classes in your software, that error message is not too much help. You are left relying on the stack trace to track down the error. This same output applies to converting a class to a string or viewing it in a debugger. It is simply not helpful. If anything, it is confusing. If you've debugged large JS applications that make liberal use of anonymous functions, you might be able to understand that frustration. Fortunately, ease.js permits you to declare a named class. A @dfn{named class} is simply a class that is assigned a string for its name, so that error messages, debuggers, etc provide more useful information. @emph{There is functionally no difference between named and anonymous classes.} @float Figure, f:class-named @verbatim var MyFoo = Class( 'MyFoo', {} ), foo = MyFoo(); // call non-existent method foo.baz(); // TypeError: Object # has no method 'baz' @end verbatim @caption{Declaring an empty @emph{named} class} @end float Much better! We now have a useful error message and immediately know which class is causing the issue. @node Temporary Classes @subsection Temporary Classes In @ref{f:class-easejs,}, we saw that the @code{new} keyword was unnecessary when instantiating classes. This permits a form of shorthand that is very useful for creating @dfn{temporary classes}, or ``throwaway`` classes which are used only once. Consider the following example: @float Figure, f:class-tmp @verbatim // new instance of anonymous class var foo = Class( { 'public bar': function() { return 'baz'; } } )(); foo.bar(); // returns 'baz' @end verbatim @caption{Declaring a temporary (throwaway) class} @end float In @ref{f:class-tmp,} above, rather than declaring a class, storing that in a variable, then instantiating it separately, we are doing it in a single command. Notice the parenthesis at the end of the statement. This invokes the constructor. Since the @code{new} keyword is unnecessary, a new instance of the class is stored in the variable @var{foo}. We call this a temporary class because it is used only to create a single instance. The class is then never referenced again. Therefore, we needn't even store it - it's throwaway. The downside of this feature is that it is difficult to notice unless the reader is paying very close attention. There is no keyword to tip them off. Therefore, it is very important to clearly document that you are storing an instance in the variable rather than an actual class definition. If you follow the CamelCase convention for class names, then simply do not capitalize the first letter of the destination variable for the instance. @node Temporary Instances @subsection Temporary Instances Similar to @ref{Temporary Classes,}, you may wish to use an @emph{instance} temporarily to invoke a method or chain of methods. @dfn{Temporary instances} are instances that are instantiated in order to invoke a method or chain of methods, then are immediately discarded. @float Figure, f:inst-tmp @verbatim // retrieve the name from an instance of Foo var name = Foo().getName(); // method chaining var car = VehicleFactory().createBody().addWheel( 4 ).addDoor( 2 ).build(); // temporary class with callback HttpRequest( host, port ).get( path, function( data ) { console.log( data ); } ); // Conventionally (without ease.js), you'd accomplish the above using the // 'new' keyword. You may still do this with ease.js, though it is less // clean looking. ( new Foo() ).someMethod(); @end verbatim @caption{Declaring a temporary (throwaway) class} @end float Rather than storing the class instance, we are using it simply to invoke methods. The results of those methods are stored in the variable rather than the class instance. The instance is immediately discarded, since it is no longer able to be referenced, and is as such a temporary instance. In order for method chaining to work, each method must return itself. This pattern is useful for when a class requires instantiation in order to invoke a method. Classes that intend to be frequently used in this manner should declare static methods so that they may be accessed without the overhead of creating a new class instance.