This project was originally LGPLv+-licensed to encourage its use in a community
that is largely copyleft-phobic. After further reflection, that was a mistake,
as adoption is not the important factor here---software freedom is.
When submitting ease.js to the GNU project, it was asked if I would be willing
to relicense it under the GPLv3+; I agreed happily, because there is no reason
why we should provide proprietary software any sort of edge. Indeed, proprietary
JavaScript is a huge problem since it is automatically downloaded on the user's
PC generally without them even knowing, and is a current focus for the FSF. As
such, to remain firm in our stance against proprietary JavaScript, relicensing
made the most sense for GNU.
This is likely to upset current users of ease.js. I am not sure of their
number---I have only seen download counts periodically on npmjs.org---but I know
there are at least a small number. These users are free to continue using the
previous LGPL'd releases, but with the understanding that there will be no
further maintenance (not even bug fixes). If possible, users should use the
GPL-licensed versions and release their software as free software.
Here comes GNU ease.js.
Getters/setters did not get much attention during the initial development of
ease.js, simply because there was such a strong focus on pre-ES5
compatibility---ease.js was created for a project that strongly required it.
Given that, getters/setters were not used, since those are ES5 features. As
such, I find that two things have happened:
1. There was little incentive to provide a proper implementation; even though
I noticed the issues during the initial development, they were left
unresolved and were then forgotten about as the project lay dormant for a
while.
2. The project was dormant because it was working as intended (sure, there
are still things on the TODO-list feature-wise). Since getters/setters were
unused in the project for which ease.js was created, the bug was never
found and so never addressed.
That said, I now am using getters/setters in a project with ease.js and noticed
a very odd bug that could not be explained by that project's implementation.
Sure enough, it was an ease.js issue and this commit resolves it.
Now, there is more to be said about this commit. Mainly, it should be noted that
MemberBuilder.buildGetterSetter, when compared with its method counterpart
(buildMethod) is incomplete---it does not properly address overrides, the
abstract keyword, proxies or the possibility of method hiding. This is certainly
something that I will get to, but I want to get this fix out as soon as I can.
Since overriding ES5 getters/setters (rather than explicit methods) is more
likely to be a rarity, and since a partial fix is better than no fix, this will
likely be tagged immediately and a further fix will follow in the (hopefully
near) future.
(This is an interesting example of how glaring bugs manage to slip through the
cracks, even when the developer is initially aware of them.)
The concept of proxy methods will become an important, core concept in ease.js
that will provide strong benefits for creating decorators and proxies, removing
boilerplate code and providing useful metadata to the system. Consider the
following example:
Class( 'Foo',
{
// ...
'public performOperation': function( bar )
{
this._doSomethingWith( bar );
return this;
},
} );
Class( 'FooDecorator',
{
'private _foo': null,
// ...
'public performOperation': function( bar )
{
return this._foo.performOperation( bar );
},
} );
In the above example, `FooDecorator` is a decorator for `Foo`. Assume that the
`getValueOf()` method is undecorated and simply needs to be proxied to its
component --- an instance of `Foo`. (It is not uncommon that a decorator, proxy,
or related class will alter certain functionality while leaving much of it
unchanged.) In order to do so, we can use this generic, boilerplate code
return this.obj.func.apply( this.obj, arguments );
which would need to be repeated again and again for *each method that needs to
be proxied*. We also have another problem --- `Foo.getValueOf()` returns
*itself*, which `FooDecorator` *also* returns. This breaks encapsulation, so we
instead need to return ourself:
'public performOperation': function( bar )
{
this._foo.performOperation( bar );
return this;
},
Our boilerplate code then becomes:
var ret = this.obj.func.apply( this.obj, arguments );
return ( ret === this.obj )
? this
: ret;
Alternatively, we could use the `proxy' keyword:
Class( 'FooDecorator2',
{
'private _foo': null,
// ...
'public proxy performOperation': '_foo',
} );
`FooDecorator2.getValueOf()` and `FooDecorator.getValueOf()` both perform the
exact same task --- proxy the entire call to another object and return its
result, unless the result is the component, in which case the decorator itself
is returned.
Proxies, as of this commit, accomplish the following:
- All arguments are forwarded to the destination
- The return value is forwarded to the caller
- If the destination returns a reference to itself, it will be replaced with
a reference to the caller's context (`this`).
- If the call is expected to fail, either because the destination is not an
object or because the requested method is not a function, a useful error
will be immediately thrown (rather than the potentially cryptic one that
would otherwise result, requiring analysis of the stack trace).
N.B. As of this commit, static proxies do not yet function properly.
Ironic, considering the current refactoring (not yet committed) of MemberBuilder to split validation logic into MemberBuilderValidator was partially to be able to easily override the fallback logic. It's a useful refactoring nonetheless, but it could have waited.