- Perhaps in future versions. The implementation details will not be ironed out before v0.1.0 and we can easily add it in the future without breaking BC. Getters/setters have not had too much attention thusfar in ease.js due to testing with systems that must work across many environments, including pre-ES5.
- This is a bug fix. The resulting class was not declared abstract, which is a problem if the resulting class chose not to provide a concrete implementation for each of the abstract members.
Getting ready for release means that we need to rest assured that everything is
operating as it should. Tests do an excellent job at aiding in this, but they
cannot cover everything. For example, a simple missing comma in a variable
declaration list could have terrible, global consequences.
Ah - you have to love those "ah-ha!" moments. The issue here is that both
uglify-js and closure compiler mangled the names in such a way that the var and
the function name had different values. In the case of closure compiler, the
function name was used to instantiate the constructor if the 'new' keyword was
omitted. This worked fine in all other tested browsers, but IE handles it
differently.
This little experience was rather frustrating. Indeed, it would imply that
the static implementation (at least, accessing protected and private static
members) was always broken in FF. I should be a bit more diligent in my testing.
Or perhaps it broke in a more recent version of FF, which is more likely. The
problem seems to be that we used defineSecureProp() for an assignment to the
actual class, then later properly assigned it to class.___$$svis$$.
Of course, defineSecureProp() makes it read-only, so this failed, causing
an improper assignment for __self, breaking the implementation. As such,
this probably broke in newer versions of FF and worked properly in older versions.
More concerningly is that the implementations clearly differ between Chromium
and Firefox. It may be that Firefox checks the prototype chain, whereas Chromium
(v8, specifically) will simply write to that object, ignoring that the property
further down the prototype chain is read-only.
I'm unsure as to why I originally placed them in separate methods. propParse() will
always find a getter at the same time it finds a setter, and vice versa, should they
both have been defined on the object.
Ironic, considering the current refactoring (not yet committed) of MemberBuilder to split validation logic into MemberBuilderValidator was partially to be able to easily override the fallback logic. It's a useful refactoring nonetheless, but it could have waited.