The concept of proxy methods will become an important, core concept in ease.js
that will provide strong benefits for creating decorators and proxies, removing
boilerplate code and providing useful metadata to the system. Consider the
following example:
Class( 'Foo',
{
// ...
'public performOperation': function( bar )
{
this._doSomethingWith( bar );
return this;
},
} );
Class( 'FooDecorator',
{
'private _foo': null,
// ...
'public performOperation': function( bar )
{
return this._foo.performOperation( bar );
},
} );
In the above example, `FooDecorator` is a decorator for `Foo`. Assume that the
`getValueOf()` method is undecorated and simply needs to be proxied to its
component --- an instance of `Foo`. (It is not uncommon that a decorator, proxy,
or related class will alter certain functionality while leaving much of it
unchanged.) In order to do so, we can use this generic, boilerplate code
return this.obj.func.apply( this.obj, arguments );
which would need to be repeated again and again for *each method that needs to
be proxied*. We also have another problem --- `Foo.getValueOf()` returns
*itself*, which `FooDecorator` *also* returns. This breaks encapsulation, so we
instead need to return ourself:
'public performOperation': function( bar )
{
this._foo.performOperation( bar );
return this;
},
Our boilerplate code then becomes:
var ret = this.obj.func.apply( this.obj, arguments );
return ( ret === this.obj )
? this
: ret;
Alternatively, we could use the `proxy' keyword:
Class( 'FooDecorator2',
{
'private _foo': null,
// ...
'public proxy performOperation': '_foo',
} );
`FooDecorator2.getValueOf()` and `FooDecorator.getValueOf()` both perform the
exact same task --- proxy the entire call to another object and return its
result, unless the result is the component, in which case the decorator itself
is returned.
Proxies, as of this commit, accomplish the following:
- All arguments are forwarded to the destination
- The return value is forwarded to the caller
- If the destination returns a reference to itself, it will be replaced with
a reference to the caller's context (`this`).
- If the call is expected to fail, either because the destination is not an
object or because the requested method is not a function, a useful error
will be immediately thrown (rather than the potentially cryptic one that
would otherwise result, requiring analysis of the stack trace).
N.B. As of this commit, static proxies do not yet function properly.
- Perhaps in future versions. The implementation details will not be ironed out before v0.1.0 and we can easily add it in the future without breaking BC. Getters/setters have not had too much attention thusfar in ease.js due to testing with systems that must work across many environments, including pre-ES5.
- This is a bug fix. The resulting class was not declared abstract, which is a problem if the resulting class chose not to provide a concrete implementation for each of the abstract members.
Getting ready for release means that we need to rest assured that everything is
operating as it should. Tests do an excellent job at aiding in this, but they
cannot cover everything. For example, a simple missing comma in a variable
declaration list could have terrible, global consequences.
Ah - you have to love those "ah-ha!" moments. The issue here is that both
uglify-js and closure compiler mangled the names in such a way that the var and
the function name had different values. In the case of closure compiler, the
function name was used to instantiate the constructor if the 'new' keyword was
omitted. This worked fine in all other tested browsers, but IE handles it
differently.
This little experience was rather frustrating. Indeed, it would imply that
the static implementation (at least, accessing protected and private static
members) was always broken in FF. I should be a bit more diligent in my testing.
Or perhaps it broke in a more recent version of FF, which is more likely. The
problem seems to be that we used defineSecureProp() for an assignment to the
actual class, then later properly assigned it to class.___$$svis$$.
Of course, defineSecureProp() makes it read-only, so this failed, causing
an improper assignment for __self, breaking the implementation. As such,
this probably broke in newer versions of FF and worked properly in older versions.
More concerningly is that the implementations clearly differ between Chromium
and Firefox. It may be that Firefox checks the prototype chain, whereas Chromium
(v8, specifically) will simply write to that object, ignoring that the property
further down the prototype chain is read-only.
I'm unsure as to why I originally placed them in separate methods. propParse() will
always find a getter at the same time it finds a setter, and vice versa, should they
both have been defined on the object.
Ironic, considering the current refactoring (not yet committed) of MemberBuilder to split validation logic into MemberBuilderValidator was partially to be able to easily override the fallback logic. It's a useful refactoring nonetheless, but it could have waited.
This is the first test case to use the new basic xUnit-style system. This
system is likely to evolve over time. Right now it's purely for
setUp, organizational and output purposes.
- This commit was originally many. Unfortunately, certain Git objects became
corrupt shortly after my 500th commit due to HDD issues. Due to the scope, I
was unable to recover the set of commits I needed (after an hour of trying
every method).
- Fortunately, vim's swap files came to the rescue. Had I been able to
properly shut down my PC, I would have been rather frustrated.