1
0
Fork 0

Parameterized traits

An in-depth description is provided by the commit message of 3fc0f90.
textend
Mike Gerwitz 2014-07-27 23:26:47 -04:00
commit 03438e0896
No known key found for this signature in database
GPG Key ID: F22BB8158EE30EAB
4 changed files with 557 additions and 20 deletions

View File

@ -72,6 +72,7 @@ var util = require( './util' ),
*/ */
public_methods = { public_methods = {
'__construct': true, '__construct': true,
'__mixin': true,
'toString': true, 'toString': true,
'__toString': true, '__toString': true,
}, },
@ -879,12 +880,17 @@ exports.prototype.createConcreteCtor = function( cname, members )
// generate and store unique instance id // generate and store unique instance id
attachInstanceId( this, ++_self._instanceId ); attachInstanceId( this, ++_self._instanceId );
// handle internal trait initialization logic, if provided // FIXME: this is a bit of a kluge for determining whether the ctor
if ( typeof this.___$$tctor$$ === 'function' ) // should be invoked before a child prector...
var haspre = ( typeof this.___$$ctor$pre$$ === 'function' );
if ( haspre
&& ClassInstance.prototype.hasOwnProperty( '___$$ctor$pre$$' )
)
{ {
// FIXME: we're exposing _priv to something that can be // FIXME: we're exposing _priv to something that can be
// malicously set by the user; encapsulate tctor // malicously set by the user
this.___$$tctor$$.call( this, _priv ); this.___$$ctor$pre$$( _priv );
haspre = false;
} }
// call the constructor, if one was provided // call the constructor, if one was provided
@ -896,6 +902,17 @@ exports.prototype.createConcreteCtor = function( cname, members )
this.__construct.apply( this, ( args || arguments ) ); this.__construct.apply( this, ( args || arguments ) );
} }
// FIXME: see above
if ( haspre )
{
this.___$$ctor$pre$$( _priv );
}
if ( typeof this.___$$ctor$post$$ === 'function' )
{
this.___$$ctor$post$$( _priv );
}
args = null; args = null;
// attach any instance properties/methods (done after // attach any instance properties/methods (done after

View File

@ -23,6 +23,10 @@ var AbstractClass = require( './class_abstract' ),
ClassBuilder = require( './ClassBuilder' ), ClassBuilder = require( './ClassBuilder' ),
Interface = require( './interface' ); Interface = require( './interface' );
function _fvoid() {};
/** /**
* Trait constructor / base object * Trait constructor / base object
* *
@ -100,7 +104,9 @@ Trait.extend = function( dfn )
// store any provided name, since we'll be clobbering it (the definition // store any provided name, since we'll be clobbering it (the definition
// object will be used to define the hidden abstract class) // object will be used to define the hidden abstract class)
var name = dfn.__name || '(Trait)'; var name = dfn.__name || '(Trait)',
type = _getTraitType( dfn ),
isparam = ( type === 'param' );
// augment the parser to handle our own oddities // augment the parser to handle our own oddities
dfn.___$$parser$$ = { dfn.___$$parser$$ = {
@ -116,10 +122,41 @@ Trait.extend = function( dfn )
// give the abstract trait class a distinctive name for debugging // give the abstract trait class a distinctive name for debugging
dfn.__name = '#AbstractTrait#'; dfn.__name = '#AbstractTrait#';
function TraitType() // if __mixin was provided,in the definition, then we should crate a
{ // paramaterized trait
throw Error( "Cannot instantiate trait" ); var Trait = ( isparam )
}; ? function ParameterTraitType()
{
// duplicate ars in a way that v8 can optimize
var args = [], i = arguments.length;
while ( i-- ) args[ i ] = arguments[ i ];
var AT = function ArgumentTrait()
{
throw Error( "Cannot re-configure argument trait" );
};
// TODO: mess!
AT.___$$mixinargs = args;
AT.__trait = 'arg';
AT.__acls = Trait.__acls;
AT.__ccls = Trait.__ccls;
AT.toString = Trait.toString;
AT.__mixinImpl = Trait.__mixinImpl;
AT.__isInstanceOf = Trait.__isInstanceOf;
// mix in the argument trait instead of the original
AT.__mixin = function( dfn, tc, base )
{
mixin( AT, dfn, tc, base );
};
return AT;
}
: function TraitType()
{
throw Error( "Cannot instantiate non-parameterized trait" );
};
// implement interfaces if indicated // implement interfaces if indicated
var base = AbstractClass; var base = AbstractClass;
@ -131,33 +168,50 @@ Trait.extend = function( dfn )
// and here we can see that traits are quite literally abstract classes // and here we can see that traits are quite literally abstract classes
var tclass = base.extend( dfn ); var tclass = base.extend( dfn );
TraitType.__trait = true; Trait.__trait = type;
TraitType.__acls = tclass; Trait.__acls = tclass;
TraitType.__ccls = null; Trait.__ccls = null;
TraitType.toString = function() Trait.toString = function()
{ {
return ''+name; return ''+name;
}; };
// invoked to trigger mixin // invoked to trigger mixin
TraitType.__mixin = function( dfn, tc, base ) Trait.__mixin = function( dfn, tc, base )
{ {
mixin( TraitType, dfn, tc, base ); mixin( Trait, dfn, tc, base );
}; };
// mixes in implemented types // mixes in implemented types
TraitType.__mixinImpl = function( dest_meta ) Trait.__mixinImpl = function( dest_meta )
{ {
mixinImpl( tclass, dest_meta ); mixinImpl( tclass, dest_meta );
}; };
// TODO: this and the above should use util.defineSecureProp // TODO: this and the above should use util.defineSecureProp
TraitType.__isInstanceOf = Interface.isInstanceOf; Trait.__isInstanceOf = Interface.isInstanceOf;
return TraitType; return Trait;
}; };
/**
* Retrieve a string representation of the trait type
*
* A trait is parameterized if it has a __mixin method; otherwise, it is
* standard.
*
* @param {Object} dfn trait definition object
* @return {string} trait type
*/
function _getTraitType( dfn )
{
return ( typeof dfn.__mixin === 'function' )
? 'param'
: 'std';
}
/** /**
* Verifies trait member restrictions * Verifies trait member restrictions
* *
@ -295,8 +349,7 @@ function createImplement( ifaces, name )
/** /**
* Determines if the provided value references a trait * Determines if the provided value references a trait
* *
* @param {*} trait value to check * @param {*} trait value to check
*
* @return {boolean} whether the provided value references a trait * @return {boolean} whether the provided value references a trait
*/ */
Trait.isTrait = function( trait ) Trait.isTrait = function( trait )
@ -305,6 +358,32 @@ Trait.isTrait = function( trait )
}; };
/**
* Determines if the provided value references a parameterized trait
*
* @param {*} trait value to check
* @return {boolean} whether the provided value references a param trait
*/
Trait.isParameterTrait = function( trait )
{
return !!( ( trait || {} ).__trait === 'param' );
};
/**
* Determines if the provided value references an argument trait
*
* An argument trait is a configured parameter trait.
*
* @param {*} trait value to check
* @return {boolean} whether the provided value references an arg trait
*/
Trait.isArgumentTrait = function( trait )
{
return !!( ( trait || {} ).__trait === 'arg' );
};
/** /**
* Create a concrete class from the abstract trait class * Create a concrete class from the abstract trait class
* *
@ -460,6 +539,24 @@ function mixin( trait, dfn, tc, base )
// retrieve the private member name that will contain this trait object // retrieve the private member name that will contain this trait object
var iname = addTraitInst( trait, dfn, tc, base ); var iname = addTraitInst( trait, dfn, tc, base );
// TODO: this should not be necessary for dfn metadata
dfn[ 'weak virtual ___$$ctor$pre$$' ] = _fvoid;
dfn[ 'weak virtual ___$$ctor$post$$' ] = _fvoid;
// TODO: this is a kluge; generalize and move
// this ensures __construct is called before __mixin when mixing into
// the base class
if ( base === ClassBuilder.ClassBase )
{
dfn[ 'virtual override ___$$ctor$post$$' ] = _tctorApply;
dfn[ 'virtual override ___$$ctor$pre$$' ] = _fvoid;
}
else
{
dfn[ 'virtual override ___$$ctor$post$$' ] = _fvoid;
dfn[ 'virtual override ___$$ctor$pre$$' ] = _tctorApply;
}
// recursively mix in trait's underlying abstract class (ensuring that // recursively mix in trait's underlying abstract class (ensuring that
// anything that the trait inherits from is also properly mixed in) // anything that the trait inherits from is also properly mixed in)
mixinCls( acls, dfn, iname ); mixinCls( acls, dfn, iname );
@ -542,6 +639,14 @@ function mixMethods( src, dest, vis, iname )
continue; continue;
} }
// TODO: generalize
// __mixin is exclusive to the trait (private-ish, but can be
// invoked publically internally)
if ( f === '__mixin' )
{
continue;
}
// TODO: this is a kluge; we'll use proper reflection eventually, // TODO: this is a kluge; we'll use proper reflection eventually,
// but for now, this is how we determine if this is an actual method // but for now, this is how we determine if this is an actual method
// vs. something that just happens to be on the visibility object // vs. something that just happens to be on the visibility object
@ -670,6 +775,8 @@ function addTraitInst( T, dfn, tc, base )
* resulting objects assigned to their rsepective pre-determined field * resulting objects assigned to their rsepective pre-determined field
* names. * names.
* *
* The MIXINARGS are only useful in the case of parameterized trait.
*
* This will lazily create the concrete trait class if it does not already * This will lazily create the concrete trait class if it does not already
* exist, which saves work if the trait is never used. * exist, which saves work if the trait is never used.
* *
@ -701,6 +808,12 @@ function tctor( tc, base, privsym )
// visibility object to gain access to its protected members...quite // visibility object to gain access to its protected members...quite
// the intimate relationship // the intimate relationship
this[ f ] = C( base, this[ privsym ].vis )[ privsym ].vis; this[ f ] = C( base, this[ privsym ].vis )[ privsym ].vis;
// this has been previously validated to ensure that it is a
// function
this[ f ].__mixin && this[ f ].__mixin.apply(
this[ f ], T.___$$mixinargs
);
} }
// if we are a subtype, be sure to initialize our parent's traits // if we are a subtype, be sure to initialize our parent's traits
@ -728,5 +841,11 @@ function createTctor( tc, base )
} }
function _tctorApply()
{
this.___$$tctor$$.apply( this, arguments );
}
module.exports = Trait; module.exports = Trait;

View File

@ -82,6 +82,8 @@ require( 'common' ).testCase(
/** /**
* A trait can only be used by something else---it does not make sense * A trait can only be used by something else---it does not make sense
* to instantiate them directly, since they form an incomplete picture. * to instantiate them directly, since they form an incomplete picture.
*
* Now, that said, see parameterized traits.
*/ */
'@each(ctor) Cannot instantiate trait without error': function( T ) '@each(ctor) Cannot instantiate trait without error': function( T )
{ {

View File

@ -0,0 +1,399 @@
/**
* Tests parameterized traits
*
* Copyright (C) 2014 Free Software Foundation, Inc.
*
* This file is part of GNU ease.js.
*
* ease.js is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*** XXX __construct or __mixin first? __mixin with no parameters should
* permit standard trait with initialization procedure ***/
require( 'common' ).testCase(
{
caseSetUp: function()
{
this.Sut = this.require( 'Trait' );
this.Class = this.require( 'class' );
var _self = this;
this.createParamTrait = function( f )
{
return _self.Sut( { __mixin: ( f || function() {} ) } );
};
},
/**
* Since traits are reusable components mixed into classes, they
* themselves do not have a constructor. This puts the user at a
* disadvantage, because she would have to create a new trait to simply
* to provide some sort of configuration at the time the class is
* instantiated. Adding a method to do the configuration is another
* option, but that is inconvenient, especially when the state is
* intended to be immutable.
*
* This does not suffer from the issue that Scala is having in trying to
* implement a similar feature because traits cannot have non-private
* properties; the linearization process disambiguates.
*
* When a trait contains a __mixin method, it is created as a
* ParameterTraitType instead of a TraitType. Both must be recognized as
* traits so that they can both be mixed in as expected; a method is
* provided to assert whether or not a trait is a parameter trait
* programatically, since attempting to configure a non-param trait will
* throw an exception.
*/
'Can create parameter traits': function()
{
var T = this.createParamTrait();
this.assertOk( this.Sut.isParameterTrait( T ) );
this.assertOk( this.Sut.isTrait( T ) );
},
/**
* A parameter trait is in an uninitialized state---it cannot be mixed
* in until arguments have been provided; same rationale as a class
* constructor.
*/
'Cannot mix in a parameter trait': function()
{
var _self = this;
this.assertThrows( function()
{
_self.Class.use( _self.createParamTrait() )();
} );
},
/**
* Invoking a parameter trait will produce an argument trait which may
* be mixed in. This has the effect of appearing as though the trait is
* being instantiated (but it's not).
*/
'Invoking parameter trait produces argument trait': function()
{
var _self = this;
this.assertDoesNotThrow( function()
{
_self.assertOk(
_self.Sut.isArgumentTrait( _self.createParamTrait()() )
);
} );
},
/**
* Traits cannot be instantiated; ensure that this remains true, even
* with the parameterized trait implementation.
*/
'Invoking a standard trait throws an exception': function()
{
var Sut = this.Sut;
this.assertThrows( function()
{
// no __mixin method; not a param trait
Sut( {} )();
} );
},
/**
* Argument traits can be mixed in just as non-parameterized traits can;
* it would be silly not to consider them to be traits through our
* reflection API.
*/
'Recognizes argument trait as a trait': function()
{
this.assertOk(
this.Sut.isTrait( this.createParamTrait()() )
);
},
/**
* A param trait, upon configuration, returns an immutable argument
* trait; any attempt to invoke it (e.g. to try to re-configure) is in
* error.
*/
'Cannot re-configure argument trait': function()
{
var _self = this;
this.assertThrows( function()
{
// ParameterTrait => ArgumentTrait => Error
_self.createParamTrait()()();
} );
},
/**
* Upon instantiating a class into which an argument trait was mixed,
* all configuration arguments should be passed to the __mixin method.
* Note that this means that __mixin *will not* be called at the point
* that the param trait is configured.
*/
'__mixin is invoked upon class instantiation': function()
{
var called = 0;
var T = this.createParamTrait( function()
{
called++;
} );
// ensure we only invoke __mixin a single time
this.Class( {} ).use( T() )();
this.assertEqual( called, 1 );
},
/**
* Standard sanity check---make sure that the arguments provided during
* configuration are passed as-is, by reference, to __mixin. Note that
* this has the terrible consequence that, should one of the arguments
* be modified by __mixin (e.g. an object field), then it will be
* modified for all other __mixin calls. But that is the case with any
* function. ;)
*/
'__mixin is passed arguments by reference': function()
{
var args,
a = { a: 'a' },
b = { b: 'b' };
var T = this.createParamTrait( function()
{
args = arguments;
} );
this.Class( {} ).use( T( a, b ) )();
this.assertStrictEqual( a, args[ 0 ] );
this.assertStrictEqual( b, args[ 1 ] );
},
/**
* The __mixin method should be invoked within the context of the trait
* and should therefore have access to its private members. Indeed,
* parameterized traits would have far more limited use if __mixin did
* not have access to private members, because that would be the proper
* place to hold configuration data.
*/
'__mixin has access to trait private members': function()
{
var expected = {};
var T = this.Sut(
{
'private _foo': null,
__mixin: function( arg ) { this._foo = arg; },
getFoo: function() { return this._foo; },
} );
this.assertStrictEqual( expected,
this.Class( {} ).use( T( expected ) )().getFoo()
);
},
/**
* It is still useful to be able to define a __mixin method to be called
* as an initialization method for default state; otherwise, arbitrary
* method overrides or explicit method calls are needed.
*/
'__mixin with empty parameter list is still invoked': function()
{
var expected = {},
given;
var T = this.createParamTrait( function() { given = expected; } );
// notice that we still configure T, with an empty argument list
this.Class( {} ).use( T() )();
this.assertStrictEqual( expected, given );
},
/**
* Parameterized traits are intended to be configured. However, there
* are a number of reasons to allow them to be mixed in without
* configuration (that is---without being converted into argument
* traits):
* - Permits default behavior with no configuration, overridable with;
* - If any __mixin definition required configuration, then traits
* would break backwards-compatibility if they wished to define it,
* with no means of maintaining BC;
* - Allows trait itself to determine whether arguments are required.
*/
'Mixing in param trait will invoke __mixin with no arguments':
function()
{
var n = 0;
// ensure consistency at any arity; we'll test nullary and unary,
// assuming the same holds true for any n-ary __mixin method
var T0 = this.createParamTrait( function() { n |= 1; } ),
T1 = this.createParamTrait( function( a ) { n |= 2; } );
// ensure that param traits do not throw errors when mixed in (as
// opposed to argument traits, which have been tested thusfar)
var C = this.Class( {} );
this.assertDoesNotThrow( function()
{
C.use( T0 )();
C.use( T1 )();
} );
this.assertEqual( n, 3 );
},
/**
* Sibling traits are an interesting case---rather than stacking, they
* are mixed in alongside each other, meaning that there may be
* multiple traits that define __mixin. Ordinarily, this is a problem;
* however, __mixin shall be treated as if it were private and shall be
* invoked once per trait, giving each a chance to initialize.
*
* Furthermore, each should retain access to their own configuration.
*/
'Invokes __mixin of each sibling mixin': function()
{
var args = [],
vals = [ {}, [] ],
c = function() { args.push( arguments ) };
var Ta = this.createParamTrait( c ),
Tb = this.createParamTrait( c );
this.Class( {} ).use( Ta( vals[0] ), Tb( vals[1] ) )();
this.assertEqual( args.length, 2 );
this.assertStrictEqual( args[0][0], vals[0] );
this.assertStrictEqual( args[1][0], vals[1] );
},
/**
* This decision is not arbitrary.
*
* We shall consider two different scenarios: first, the case of mixing
* in some trait T atop of some class C. Assume that C defines a
* __construct method; it does not know whether or not a trait will be
* mixed in, nor should it care---it should proceed initializing its
* state as normal. However, what if a trait were to be mixed in,
* overriding certain behaviors? It is then imperative that T be
* initialized prior to any calls by C#__construct. It is not important
* that C be initialized prior to T#__mixin, because T can know that it
* should not invoke any methods that will fail---it should be used only
* to initialize state. (In the future, ease.js may enforce this
* restriction.)
*
* The second scenario is described in the test that follows.
*/
'Invokes __mixin before __construct when C.use(T)': function()
{
var mixok = false;
var T = this.createParamTrait( function() { mixok = true } ),
C = this.Class(
{
__construct: function()
{
if ( !mixok ) throw Error(
"__construct called before __mixin"
);
}
} );
this.assertDoesNotThrow( function()
{
C.use( T )();
} );
},
/**
* (Continued from above test.)
*
* In the reverse situation---whereby C effectively extends T---we want
* __construct to instead be called *after* __mixin of T (and any other
* traits in the set). This is because __construct may wish to invoke
* methods of T, but what would cause problems if T were not
* initialized. Further, T would not have knowledge of C and, if it
* expected a concrete implementation to be called from T#__mixin, then
* T would have already been initialized, or C's concrete implementation
* would know what not to do (in the case of a partial initialization).
*
* This is also more intuitive---we are invoking initialize methods as
* if they were part of a stack.
*/
'Invokes __construct before __mixin when Class.use(T).extend()':
function()
{
var cok = false;
var T = this.createParamTrait( function()
{
if ( !cok ) throw Error(
"__mixin called before __construct"
);
} );
var C = this.Class.use( T ).extend(
{
__construct: function() { cok = true }
} );
this.assertDoesNotThrow( function()
{
C();
} );
},
/**
* The same concept as above, extended to subtypes. In particular, we
* need to ensure that the subtype is able to properly initialize or
* alter state that __mixin of a supertype depends upon.
*/
'Subtype invokes ctor before supertype __construct or __mixin':
function()
{
var cok = false;
var T = this.createParamTrait( function()
{
if ( !cok ) throw Error(
"__mixin called before Sub#__construct"
);
} );
var Sub = this.Class( {} ).use( T ).extend(
{
__construct: function() { cok = true }
} );
this.assertDoesNotThrow( function()
{
Sub();
} );
},
} );